利用小分子芯片发现DEAD-Box rna结合蛋白DDX21的化学探针。

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Toshihiko Aiba, Eliezer Calo, Angela N Koehler
{"title":"利用小分子芯片发现DEAD-Box rna结合蛋白DDX21的化学探针。","authors":"Toshihiko Aiba, Eliezer Calo, Angela N Koehler","doi":"10.1021/acschembio.5c00302","DOIUrl":null,"url":null,"abstract":"<p><p>The DEAD-box family of ATPases plays a critical role in nearly all stages of RNA metabolism, from transcription to degradation, and serves as a major regulator of biomolecular condensates. Dysregulation of DEAD-box proteins is well-established in a variety of diseases, including cancer and neurodegenerative disorders, making them attractive therapeutic targets. However, their classification as \"undruggable\" has historically hindered small-molecule-based modulation. In this study, we focus on DDX21, a member of the DEAD-box family involved in ribosome biogenesis and transcription regulation. As a proof of concept for targeting such RNA-binding proteins, we developed a lysate-based small-molecule microarray platform to identify compounds that directly bind DDX21. This screen led to the discovery of KI-DX-014, a small-molecule compound capable of inhibiting the interaction of DDX21 with RNA. KI-DX-014 modulated the RNA-dependent functions of DDX21, including its ATPase activity and biomolecular condensate formation. Furthermore, KI-DX-014 attenuated the DDX21-dependent release of P-TEFb from the 7SK snRNP complex <i>in vitro</i>, suppressed P-TEFb-dependent phosphorylation of the RNA polymerase II CTD, and induced developmental defects in zebrafish embryos. These findings reveal a previously unexploited therapeutic avenue and establish KI-DX-014 as a chemical probe for dissecting the biological functions of DDX21 in both normal physiology and disease states.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical Probe Discovery for DEAD-Box RNA-Binding Protein DDX21 Using Small-Molecule Microarrays.\",\"authors\":\"Toshihiko Aiba, Eliezer Calo, Angela N Koehler\",\"doi\":\"10.1021/acschembio.5c00302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The DEAD-box family of ATPases plays a critical role in nearly all stages of RNA metabolism, from transcription to degradation, and serves as a major regulator of biomolecular condensates. Dysregulation of DEAD-box proteins is well-established in a variety of diseases, including cancer and neurodegenerative disorders, making them attractive therapeutic targets. However, their classification as \\\"undruggable\\\" has historically hindered small-molecule-based modulation. In this study, we focus on DDX21, a member of the DEAD-box family involved in ribosome biogenesis and transcription regulation. As a proof of concept for targeting such RNA-binding proteins, we developed a lysate-based small-molecule microarray platform to identify compounds that directly bind DDX21. This screen led to the discovery of KI-DX-014, a small-molecule compound capable of inhibiting the interaction of DDX21 with RNA. KI-DX-014 modulated the RNA-dependent functions of DDX21, including its ATPase activity and biomolecular condensate formation. Furthermore, KI-DX-014 attenuated the DDX21-dependent release of P-TEFb from the 7SK snRNP complex <i>in vitro</i>, suppressed P-TEFb-dependent phosphorylation of the RNA polymerase II CTD, and induced developmental defects in zebrafish embryos. These findings reveal a previously unexploited therapeutic avenue and establish KI-DX-014 as a chemical probe for dissecting the biological functions of DDX21 in both normal physiology and disease states.</p>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acschembio.5c00302\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.5c00302","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

DEAD-box ATPases家族几乎在RNA代谢的所有阶段(从转录到降解)都起着关键作用,并且是生物分子凝聚的主要调节剂。DEAD-box蛋白的失调在包括癌症和神经退行性疾病在内的多种疾病中都是公认的,这使它们成为有吸引力的治疗靶点。然而,它们的“不可药物”分类历来阻碍了基于小分子的调制。在这项研究中,我们重点研究了DDX21,它是DEAD-box家族中参与核糖体生物发生和转录调控的成员。为了证明靶向这种rna结合蛋白的概念,我们开发了一个基于裂解物的小分子微阵列平台来识别直接结合DDX21的化合物。这种筛选导致KI-DX-014的发现,这是一种能够抑制DDX21与RNA相互作用的小分子化合物。KI-DX-014调节DDX21的rna依赖功能,包括其atp酶活性和生物分子凝聚形成。此外,KI-DX-014在体外降低了7SK snRNP复合物中P-TEFb的ddx21依赖性释放,抑制了P-TEFb依赖性RNA聚合酶II CTD的磷酸化,并诱导了斑马鱼胚胎的发育缺陷。这些发现揭示了一条以前未开发的治疗途径,并建立了KI-DX-014作为化学探针来解剖DDX21在正常生理和疾病状态下的生物学功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemical Probe Discovery for DEAD-Box RNA-Binding Protein DDX21 Using Small-Molecule Microarrays.

The DEAD-box family of ATPases plays a critical role in nearly all stages of RNA metabolism, from transcription to degradation, and serves as a major regulator of biomolecular condensates. Dysregulation of DEAD-box proteins is well-established in a variety of diseases, including cancer and neurodegenerative disorders, making them attractive therapeutic targets. However, their classification as "undruggable" has historically hindered small-molecule-based modulation. In this study, we focus on DDX21, a member of the DEAD-box family involved in ribosome biogenesis and transcription regulation. As a proof of concept for targeting such RNA-binding proteins, we developed a lysate-based small-molecule microarray platform to identify compounds that directly bind DDX21. This screen led to the discovery of KI-DX-014, a small-molecule compound capable of inhibiting the interaction of DDX21 with RNA. KI-DX-014 modulated the RNA-dependent functions of DDX21, including its ATPase activity and biomolecular condensate formation. Furthermore, KI-DX-014 attenuated the DDX21-dependent release of P-TEFb from the 7SK snRNP complex in vitro, suppressed P-TEFb-dependent phosphorylation of the RNA polymerase II CTD, and induced developmental defects in zebrafish embryos. These findings reveal a previously unexploited therapeutic avenue and establish KI-DX-014 as a chemical probe for dissecting the biological functions of DDX21 in both normal physiology and disease states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信