表面局部杂质散射作为拓扑近藤绝缘子的探针

C.-C. Joseph Wang, Jean-Pierre Julien, A. V. Balatsky, Jian-Xin Zhu
{"title":"表面局部杂质散射作为拓扑近藤绝缘子的探针","authors":"C.-C. Joseph Wang,&nbsp;Jean-Pierre Julien,&nbsp;A. V. Balatsky,&nbsp;Jian-Xin Zhu","doi":"10.1002/apxr.202500003","DOIUrl":null,"url":null,"abstract":"<p>Shortly after the discovery of topological band insulators, topological Kondo insulators (TKIs) is also theoretically predicted. The latter has ignited revival interest in the properties of Kondo insulators. Currently, the feasibility of topological nature in SmB<sub>6</sub> is intensively analyzed by several complementary probes. Here by starting with a minimal-orbital Anderson lattice model, the local electronic structure is explored in a Kondo insulator. It is showed that the two strong topological regimes sandwiching the weak topological regime give rise to a single Dirac cone, which is located near the center or corner of the surface Brillouin zone. It is further found that, when a single impurity is placed on the surface, low-energy resonance states are induced in the weak scattering limit for the strong TKI regimes and the resonance level moves monotonically across the hybridization gap with the strength of impurity scattering potential; while low energy states can only be induced in the unitary scattering limit for the weak TKI regime, where the resonance level moves universally toward the center of the hybridization gap. These impurity-induced low-energy quasiparticles will lead to characteristic signatures in scanning tunneling microscopy/spectroscopy, which has recently found success in probing into exotic properties in heavy fermion systems.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"4 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202500003","citationCount":"0","resultStr":"{\"title\":\"Surface Local Impurity Scattering as a Probe for Topological Kondo Insulators\",\"authors\":\"C.-C. Joseph Wang,&nbsp;Jean-Pierre Julien,&nbsp;A. V. Balatsky,&nbsp;Jian-Xin Zhu\",\"doi\":\"10.1002/apxr.202500003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Shortly after the discovery of topological band insulators, topological Kondo insulators (TKIs) is also theoretically predicted. The latter has ignited revival interest in the properties of Kondo insulators. Currently, the feasibility of topological nature in SmB<sub>6</sub> is intensively analyzed by several complementary probes. Here by starting with a minimal-orbital Anderson lattice model, the local electronic structure is explored in a Kondo insulator. It is showed that the two strong topological regimes sandwiching the weak topological regime give rise to a single Dirac cone, which is located near the center or corner of the surface Brillouin zone. It is further found that, when a single impurity is placed on the surface, low-energy resonance states are induced in the weak scattering limit for the strong TKI regimes and the resonance level moves monotonically across the hybridization gap with the strength of impurity scattering potential; while low energy states can only be induced in the unitary scattering limit for the weak TKI regime, where the resonance level moves universally toward the center of the hybridization gap. These impurity-induced low-energy quasiparticles will lead to characteristic signatures in scanning tunneling microscopy/spectroscopy, which has recently found success in probing into exotic properties in heavy fermion systems.</p>\",\"PeriodicalId\":100035,\"journal\":{\"name\":\"Advanced Physics Research\",\"volume\":\"4 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202500003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Physics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202500003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202500003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在拓扑带状绝缘子发现后不久,拓扑近藤绝缘子(tki)也得到了理论预测。后者点燃了人们对近藤绝缘体性能的兴趣。目前,SmB6拓扑性质的可行性通过几个互补探针进行了深入分析。本文从最小轨道安德森晶格模型出发,探讨了近藤绝缘体的局部电子结构。结果表明,将两个强拓扑区夹在弱拓扑区中会产生一个位于表面布里渊区中心或角落附近的单一狄拉克锥。进一步发现,当在表面上放置单个杂质时,在强TKI区弱散射极限处诱导出低能共振态,共振能级随杂质散射势的强度沿杂化间隙单调移动;而低能态只能在弱TKI体系的统一散射极限下产生,在弱TKI体系中,共振能级普遍向杂化隙的中心移动。这些杂质诱导的低能准粒子将导致扫描隧道显微镜/光谱学中的特征特征,该技术最近在探测重费米子系统的奇异性质方面取得了成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surface Local Impurity Scattering as a Probe for Topological Kondo Insulators

Surface Local Impurity Scattering as a Probe for Topological Kondo Insulators

Shortly after the discovery of topological band insulators, topological Kondo insulators (TKIs) is also theoretically predicted. The latter has ignited revival interest in the properties of Kondo insulators. Currently, the feasibility of topological nature in SmB6 is intensively analyzed by several complementary probes. Here by starting with a minimal-orbital Anderson lattice model, the local electronic structure is explored in a Kondo insulator. It is showed that the two strong topological regimes sandwiching the weak topological regime give rise to a single Dirac cone, which is located near the center or corner of the surface Brillouin zone. It is further found that, when a single impurity is placed on the surface, low-energy resonance states are induced in the weak scattering limit for the strong TKI regimes and the resonance level moves monotonically across the hybridization gap with the strength of impurity scattering potential; while low energy states can only be induced in the unitary scattering limit for the weak TKI regime, where the resonance level moves universally toward the center of the hybridization gap. These impurity-induced low-energy quasiparticles will lead to characteristic signatures in scanning tunneling microscopy/spectroscopy, which has recently found success in probing into exotic properties in heavy fermion systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信