Lei Zhang, Linghua Su, Ying Luo, Jianfei Ren, Qun Zhang
{"title":"多干扰条件下多目标跟踪的网络化雷达波束分配方法","authors":"Lei Zhang, Linghua Su, Ying Luo, Jianfei Ren, Qun Zhang","doi":"10.1049/rsn2.70039","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on the problem of mainlobe interference suppression in radar networks tracking multi-target scenarios with multiple jammers. A beam allocation method is proposed based on stepwise suppression of mainlobe and sidelobe interference. Although a single radar can effectively suppress sidelobe interference, mainlobe interference necessitates collaborative countermeasures among multiple radar nodes, indicating that the beam allocation method significantly impacts interference suppression performance. We derive the mathematical relationship between target tracking accuracy and beam allocation strategy to address this. Subsequently, we establish a beam allocation model, with the beam allocation matrix as the optimisation variable and target tracking accuracy as the optimisation objective. One intelligent algorithm is employed to solve this model. Simulation results demonstrate that the proposed method optimises the allocation of anti-jamming resources in the radar network, leading to efficient interference suppression and stable target tracking.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70039","citationCount":"0","resultStr":"{\"title\":\"A Networked Radar Beam Allocation Method for Multi-Target Tracking in Multi-Jammer Scenario\",\"authors\":\"Lei Zhang, Linghua Su, Ying Luo, Jianfei Ren, Qun Zhang\",\"doi\":\"10.1049/rsn2.70039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper focuses on the problem of mainlobe interference suppression in radar networks tracking multi-target scenarios with multiple jammers. A beam allocation method is proposed based on stepwise suppression of mainlobe and sidelobe interference. Although a single radar can effectively suppress sidelobe interference, mainlobe interference necessitates collaborative countermeasures among multiple radar nodes, indicating that the beam allocation method significantly impacts interference suppression performance. We derive the mathematical relationship between target tracking accuracy and beam allocation strategy to address this. Subsequently, we establish a beam allocation model, with the beam allocation matrix as the optimisation variable and target tracking accuracy as the optimisation objective. One intelligent algorithm is employed to solve this model. Simulation results demonstrate that the proposed method optimises the allocation of anti-jamming resources in the radar network, leading to efficient interference suppression and stable target tracking.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70039\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70039\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70039","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Networked Radar Beam Allocation Method for Multi-Target Tracking in Multi-Jammer Scenario
This paper focuses on the problem of mainlobe interference suppression in radar networks tracking multi-target scenarios with multiple jammers. A beam allocation method is proposed based on stepwise suppression of mainlobe and sidelobe interference. Although a single radar can effectively suppress sidelobe interference, mainlobe interference necessitates collaborative countermeasures among multiple radar nodes, indicating that the beam allocation method significantly impacts interference suppression performance. We derive the mathematical relationship between target tracking accuracy and beam allocation strategy to address this. Subsequently, we establish a beam allocation model, with the beam allocation matrix as the optimisation variable and target tracking accuracy as the optimisation objective. One intelligent algorithm is employed to solve this model. Simulation results demonstrate that the proposed method optimises the allocation of anti-jamming resources in the radar network, leading to efficient interference suppression and stable target tracking.
期刊介绍:
IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications.
Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.