Michael T. Pettes, Shi-Zeng Lin, Elizabeth A. Peterson, Jian-Xin Zhu, Laurel E. Winter, Johanna C. Palmstrom, Jinkyoung Yoo, Nicholas S. Sirica, Prashant Padmanabhan, Priscila F. S. Rosa, Sean M. Thomas, Avadh Saxena
{"title":"凝聚态物质中的量子异常","authors":"Michael T. Pettes, Shi-Zeng Lin, Elizabeth A. Peterson, Jian-Xin Zhu, Laurel E. Winter, Johanna C. Palmstrom, Jinkyoung Yoo, Nicholas S. Sirica, Prashant Padmanabhan, Priscila F. S. Rosa, Sean M. Thomas, Avadh Saxena","doi":"10.1002/apxr.202400189","DOIUrl":null,"url":null,"abstract":"<p>Quantum materials provide a fertile ground in which to test and realize unusual phenomena such as quantum anomalies predicted by quantum field theory. There are three important symmetries that are broken when classical field theory is moved into the quantum regime, the scale anomaly, the axial (chiral) anomaly, and the parity anomaly. Several potential device applications may be realized by the discovery of quantum anomalies in condensed matter, enabled by the new physics they embody, including ultra-sensitive dark matter detectors, far infrared optical modulators, micro-bolometric detectors, low-dissipation ballistic transporters, terahertz-based qubits, terahertz polarization state controls, passive magnetic field sensors, stable topological superconductors that host Majorana fermions, and qubits topologically protected against decoherence. In this perspective article, the definition of these quantum anomalies is laid out, how little is known in the context of condensed matter, and how quantum anomalies are predicted to manifest as anomalous electronic, thermal, and magnetic behavior in experiments on topological quantum materials, including Weyl and Dirac semimetals. Furthermore, the importance that mechanical strain and defects will play in modifying signatures of quantum anomalies is discussed.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"4 7","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400189","citationCount":"0","resultStr":"{\"title\":\"Quantum Anomalies in Condensed Matter\",\"authors\":\"Michael T. Pettes, Shi-Zeng Lin, Elizabeth A. Peterson, Jian-Xin Zhu, Laurel E. Winter, Johanna C. Palmstrom, Jinkyoung Yoo, Nicholas S. Sirica, Prashant Padmanabhan, Priscila F. S. Rosa, Sean M. Thomas, Avadh Saxena\",\"doi\":\"10.1002/apxr.202400189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum materials provide a fertile ground in which to test and realize unusual phenomena such as quantum anomalies predicted by quantum field theory. There are three important symmetries that are broken when classical field theory is moved into the quantum regime, the scale anomaly, the axial (chiral) anomaly, and the parity anomaly. Several potential device applications may be realized by the discovery of quantum anomalies in condensed matter, enabled by the new physics they embody, including ultra-sensitive dark matter detectors, far infrared optical modulators, micro-bolometric detectors, low-dissipation ballistic transporters, terahertz-based qubits, terahertz polarization state controls, passive magnetic field sensors, stable topological superconductors that host Majorana fermions, and qubits topologically protected against decoherence. In this perspective article, the definition of these quantum anomalies is laid out, how little is known in the context of condensed matter, and how quantum anomalies are predicted to manifest as anomalous electronic, thermal, and magnetic behavior in experiments on topological quantum materials, including Weyl and Dirac semimetals. Furthermore, the importance that mechanical strain and defects will play in modifying signatures of quantum anomalies is discussed.</p>\",\"PeriodicalId\":100035,\"journal\":{\"name\":\"Advanced Physics Research\",\"volume\":\"4 7\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400189\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Physics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum materials provide a fertile ground in which to test and realize unusual phenomena such as quantum anomalies predicted by quantum field theory. There are three important symmetries that are broken when classical field theory is moved into the quantum regime, the scale anomaly, the axial (chiral) anomaly, and the parity anomaly. Several potential device applications may be realized by the discovery of quantum anomalies in condensed matter, enabled by the new physics they embody, including ultra-sensitive dark matter detectors, far infrared optical modulators, micro-bolometric detectors, low-dissipation ballistic transporters, terahertz-based qubits, terahertz polarization state controls, passive magnetic field sensors, stable topological superconductors that host Majorana fermions, and qubits topologically protected against decoherence. In this perspective article, the definition of these quantum anomalies is laid out, how little is known in the context of condensed matter, and how quantum anomalies are predicted to manifest as anomalous electronic, thermal, and magnetic behavior in experiments on topological quantum materials, including Weyl and Dirac semimetals. Furthermore, the importance that mechanical strain and defects will play in modifying signatures of quantum anomalies is discussed.