厄瓜多尔亚马逊地区幼龄罗布斯塔农林业系统中樱桃产量的非初级宏量营养素限制证据

IF 3.6 4区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Chase S. Kasmerchak, Jordon Wade, Eduardo Chavez, Carlos Caicedo, Cristian Subía, Andrew J. Margenot
{"title":"厄瓜多尔亚马逊地区幼龄罗布斯塔农林业系统中樱桃产量的非初级宏量营养素限制证据","authors":"Chase S. Kasmerchak,&nbsp;Jordon Wade,&nbsp;Eduardo Chavez,&nbsp;Carlos Caicedo,&nbsp;Cristian Subía,&nbsp;Andrew J. Margenot","doi":"10.1002/ael2.70026","DOIUrl":null,"url":null,"abstract":"<p>Robusta (<i>Coffea canephora</i> Pierre ex Froehner) is a vital cash crop for smallholder farmers in the Ecuadorian Amazon. However, fertility recommendations for robusta production are highly variable across contexts, necessitating regionally tailored recommendations to better diagnose yield-limiting nutrients. Across a gradient of input intensities and agroforestry reflective of local practices, we employed the least absolute shrinkage and selection operator (LASSO) regression to identify which soil fertility measures and leaf nutrients best explained robusta yields across replicated management system treatments in the Ecuadorian Amazon. Leaf nutrients, particularly calcium and magnesium, were stronger and more parsimonious predictors of yields than soil inorganic nitrogen and Mehlich-3 extractable phosphorus and potassium. Although the LASSO model provided reasonable yield estimates (<i>R</i><sup>2</sup> = 0.74; root mean square error = 0.23 kg tree<sup>−1</sup>), model underestimation of yields &gt;1.0 kg tree<sup>−1</sup> suggests that other factor(s) not captured by soil and foliar nutrient measures may limit cherry production in higher-yielding systems.</p>","PeriodicalId":48502,"journal":{"name":"Agricultural & Environmental Letters","volume":"10 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ael2.70026","citationCount":"0","resultStr":"{\"title\":\"Evidence for non-primary macronutrient limitations on cherry yields in young robusta agroforestry systems in the Ecuadorian Amazon\",\"authors\":\"Chase S. Kasmerchak,&nbsp;Jordon Wade,&nbsp;Eduardo Chavez,&nbsp;Carlos Caicedo,&nbsp;Cristian Subía,&nbsp;Andrew J. Margenot\",\"doi\":\"10.1002/ael2.70026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Robusta (<i>Coffea canephora</i> Pierre ex Froehner) is a vital cash crop for smallholder farmers in the Ecuadorian Amazon. However, fertility recommendations for robusta production are highly variable across contexts, necessitating regionally tailored recommendations to better diagnose yield-limiting nutrients. Across a gradient of input intensities and agroforestry reflective of local practices, we employed the least absolute shrinkage and selection operator (LASSO) regression to identify which soil fertility measures and leaf nutrients best explained robusta yields across replicated management system treatments in the Ecuadorian Amazon. Leaf nutrients, particularly calcium and magnesium, were stronger and more parsimonious predictors of yields than soil inorganic nitrogen and Mehlich-3 extractable phosphorus and potassium. Although the LASSO model provided reasonable yield estimates (<i>R</i><sup>2</sup> = 0.74; root mean square error = 0.23 kg tree<sup>−1</sup>), model underestimation of yields &gt;1.0 kg tree<sup>−1</sup> suggests that other factor(s) not captured by soil and foliar nutrient measures may limit cherry production in higher-yielding systems.</p>\",\"PeriodicalId\":48502,\"journal\":{\"name\":\"Agricultural & Environmental Letters\",\"volume\":\"10 2\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ael2.70026\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural & Environmental Letters\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://acsess.onlinelibrary.wiley.com/doi/10.1002/ael2.70026\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural & Environmental Letters","FirstCategoryId":"97","ListUrlMain":"https://acsess.onlinelibrary.wiley.com/doi/10.1002/ael2.70026","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

罗布斯塔(Coffea canephora Pierre ex Froehner)是厄瓜多尔亚马逊地区小农的重要经济作物。然而,罗布斯塔生产的肥力建议在不同情况下差异很大,需要根据地区量身定制的建议,以更好地诊断限制产量的营养物质。在反映当地实践的投入强度和农林业梯度中,我们采用最小绝对收缩和选择算子(LASSO)回归来确定厄瓜多尔亚马逊地区重复管理系统处理中哪些土壤肥力措施和叶片养分最能解释罗布塔产量。叶片养分,尤其是钙和镁,比土壤无机氮和Mehlich-3可提取磷和钾更能预测产量。虽然LASSO模型提供了合理的产量估计(R2 = 0.74;均方根误差= 0.23 kg树−1),模型对产量的低估>;1.0 kg树−1表明,土壤和叶面营养措施未捕获的其他因素可能限制高产系统中的樱桃产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evidence for non-primary macronutrient limitations on cherry yields in young robusta agroforestry systems in the Ecuadorian Amazon

Evidence for non-primary macronutrient limitations on cherry yields in young robusta agroforestry systems in the Ecuadorian Amazon

Evidence for non-primary macronutrient limitations on cherry yields in young robusta agroforestry systems in the Ecuadorian Amazon

Evidence for non-primary macronutrient limitations on cherry yields in young robusta agroforestry systems in the Ecuadorian Amazon

Evidence for non-primary macronutrient limitations on cherry yields in young robusta agroforestry systems in the Ecuadorian Amazon

Robusta (Coffea canephora Pierre ex Froehner) is a vital cash crop for smallholder farmers in the Ecuadorian Amazon. However, fertility recommendations for robusta production are highly variable across contexts, necessitating regionally tailored recommendations to better diagnose yield-limiting nutrients. Across a gradient of input intensities and agroforestry reflective of local practices, we employed the least absolute shrinkage and selection operator (LASSO) regression to identify which soil fertility measures and leaf nutrients best explained robusta yields across replicated management system treatments in the Ecuadorian Amazon. Leaf nutrients, particularly calcium and magnesium, were stronger and more parsimonious predictors of yields than soil inorganic nitrogen and Mehlich-3 extractable phosphorus and potassium. Although the LASSO model provided reasonable yield estimates (R2 = 0.74; root mean square error = 0.23 kg tree−1), model underestimation of yields >1.0 kg tree−1 suggests that other factor(s) not captured by soil and foliar nutrient measures may limit cherry production in higher-yielding systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
3.80%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信