AWB+CW TD=E$ AWB+CW^TD=E$的动量加速度梯度下降法,其最小Frobenius范数解及其在时变线性系统中的应用

IF 2.2 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Akbar Shirilord, Mehdi Dehghan
{"title":"AWB+CW TD=E$ AWB+CW^TD=E$的动量加速度梯度下降法,其最小Frobenius范数解及其在时变线性系统中的应用","authors":"Akbar Shirilord,&nbsp;Mehdi Dehghan","doi":"10.1049/cth2.70047","DOIUrl":null,"url":null,"abstract":"<p>This study presents a gradient descent approach for addressing the matrix equation <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mi>W</mi>\n <mi>B</mi>\n <mo>+</mo>\n <mi>C</mi>\n <msup>\n <mi>W</mi>\n <mi>T</mi>\n </msup>\n <mi>D</mi>\n <mo>=</mo>\n <mi>E</mi>\n </mrow>\n <annotation>$AWB + CW^T D = E$</annotation>\n </semantics></math>. Additionally, this method is utilized to solve the optimization problem <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>min</mi>\n <mi>W</mi>\n </msub>\n <msup>\n <mrow>\n <mo>∥</mo>\n <mi>A</mi>\n <mi>W</mi>\n <mi>B</mi>\n <mo>+</mo>\n <mi>C</mi>\n <msup>\n <mi>W</mi>\n <mi>T</mi>\n </msup>\n <mi>D</mi>\n <mo>−</mo>\n <mi>E</mi>\n <mo>∥</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$ \\min _{W} \\Vert AWB + CW^T D - E\\Vert ^2$</annotation>\n </semantics></math> with the Frobenius norm. We provide a comprehensive analysis of the convergence and characteristics of these techniques. To improve the convergence rate, we incorporate a specific variant of the momentum method. To validate the effectiveness of our proposed iterative methods, we offer various numerical examples and compare the outcomes with those of existing algorithms. Lastly, we investigate an application within the context of time-varying linear systems.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70047","citationCount":"0","resultStr":"{\"title\":\"Gradient Descent Method With Momentum Acceleration for \\n \\n \\n A\\n W\\n B\\n +\\n C\\n \\n W\\n T\\n \\n D\\n =\\n E\\n \\n $ AWB+CW^TD=E$\\n , Its Minimum Frobenius Norm Solution and Application in Time-Varying Linear Systems\",\"authors\":\"Akbar Shirilord,&nbsp;Mehdi Dehghan\",\"doi\":\"10.1049/cth2.70047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents a gradient descent approach for addressing the matrix equation <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mi>W</mi>\\n <mi>B</mi>\\n <mo>+</mo>\\n <mi>C</mi>\\n <msup>\\n <mi>W</mi>\\n <mi>T</mi>\\n </msup>\\n <mi>D</mi>\\n <mo>=</mo>\\n <mi>E</mi>\\n </mrow>\\n <annotation>$AWB + CW^T D = E$</annotation>\\n </semantics></math>. Additionally, this method is utilized to solve the optimization problem <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>min</mi>\\n <mi>W</mi>\\n </msub>\\n <msup>\\n <mrow>\\n <mo>∥</mo>\\n <mi>A</mi>\\n <mi>W</mi>\\n <mi>B</mi>\\n <mo>+</mo>\\n <mi>C</mi>\\n <msup>\\n <mi>W</mi>\\n <mi>T</mi>\\n </msup>\\n <mi>D</mi>\\n <mo>−</mo>\\n <mi>E</mi>\\n <mo>∥</mo>\\n </mrow>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$ \\\\min _{W} \\\\Vert AWB + CW^T D - E\\\\Vert ^2$</annotation>\\n </semantics></math> with the Frobenius norm. We provide a comprehensive analysis of the convergence and characteristics of these techniques. To improve the convergence rate, we incorporate a specific variant of the momentum method. To validate the effectiveness of our proposed iterative methods, we offer various numerical examples and compare the outcomes with those of existing algorithms. Lastly, we investigate an application within the context of time-varying linear systems.</p>\",\"PeriodicalId\":50382,\"journal\":{\"name\":\"IET Control Theory and Applications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70047\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Control Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cth2.70047\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.70047","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了求解矩阵方程a WB + CW T D = E$ AWB + CW^T D = E$的梯度下降法。此外,该方法用于求解min W∥A W B + C W T优化问题D−E∥2$ \min _{W} \Vert AWB + CW^T D - E\Vert ^2$与Frobenius范数。我们对这些技术的收敛性和特点进行了全面的分析。为了提高收敛速度,我们引入了动量法的一种特殊变体。为了验证我们提出的迭代方法的有效性,我们提供了各种数值实例,并将结果与现有算法的结果进行了比较。最后,我们研究了在时变线性系统中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Gradient Descent Method With Momentum Acceleration for 
         
            
               A
               W
               B
               +
               C
               
                  W
                  T
               
               D
               =
               E
            
            $ AWB+CW^TD=E$
         , Its Minimum Frobenius Norm Solution and Application in Time-Varying Linear Systems

Gradient Descent Method With Momentum Acceleration for A W B + C W T D = E $ AWB+CW^TD=E$ , Its Minimum Frobenius Norm Solution and Application in Time-Varying Linear Systems

This study presents a gradient descent approach for addressing the matrix equation  A W B + C W T D = E $AWB + CW^T D = E$ . Additionally, this method is utilized to solve the optimization problem min W A W B + C W T D E 2 $ \min _{W} \Vert AWB + CW^T D - E\Vert ^2$ with the Frobenius norm. We provide a comprehensive analysis of the convergence and characteristics of these techniques. To improve the convergence rate, we incorporate a specific variant of the momentum method. To validate the effectiveness of our proposed iterative methods, we offer various numerical examples and compare the outcomes with those of existing algorithms. Lastly, we investigate an application within the context of time-varying linear systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Control Theory and Applications
IET Control Theory and Applications 工程技术-工程:电子与电气
CiteScore
5.70
自引率
7.70%
发文量
167
审稿时长
5.1 months
期刊介绍: IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces. Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed. Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信