尺寸效应和湿热老化对厚CFRP复合材料II型层间断裂韧性的影响

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Yan Gao, Yanquan Zhou, Zequn Lin, Chenxing Gong, Zihan Ling
{"title":"尺寸效应和湿热老化对厚CFRP复合材料II型层间断裂韧性的影响","authors":"Yan Gao,&nbsp;Yanquan Zhou,&nbsp;Zequn Lin,&nbsp;Chenxing Gong,&nbsp;Zihan Ling","doi":"10.1111/ffe.14690","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The size effects and hygrothermal aging behavior of Mode II interlaminar fracture toughness (<i>G</i><sub>II<i>c</i></sub>) for thick composites are investigated. Experimental results demonstrate that increasing specimen thickness leads to a rise in <i>G</i><sub>II<i>c</i></sub> for NPC and PC tests from 0.99 and 0.64 kJ/m<sup>2</sup> to 1.41 and 0.97 kJ/m<sup>2</sup>, respectively. FE simulation results indicate that the increase in the fracture process zone (FPZ) area plays a crucial role in contributing to the size effects observed in <i>G</i><sub>II<i>c</i></sub>. The ENF specimens exhibit a significant decrease in glass transition temperature (<i>T</i><sub><i>g</i></sub>) along with noticeable changes in fracture morphology. The <i>G</i><sub>II<i>c</i></sub> values obtained from NPC tests are significantly lower than those of unaged specimens. However, hygrothermal aging has no effect on the crack propagation behavior and <i>G</i><sub>II<i>c</i></sub> values in PC tests. These findings provide practical insights for designing and predicting the service life of composite components exposed to humid and high-temperature environments.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 8","pages":"3517-3527"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size Effects and Hygrothermal Aging on Mode II Interlaminar Fracture Toughness of Thick CFRP Composites\",\"authors\":\"Yan Gao,&nbsp;Yanquan Zhou,&nbsp;Zequn Lin,&nbsp;Chenxing Gong,&nbsp;Zihan Ling\",\"doi\":\"10.1111/ffe.14690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The size effects and hygrothermal aging behavior of Mode II interlaminar fracture toughness (<i>G</i><sub>II<i>c</i></sub>) for thick composites are investigated. Experimental results demonstrate that increasing specimen thickness leads to a rise in <i>G</i><sub>II<i>c</i></sub> for NPC and PC tests from 0.99 and 0.64 kJ/m<sup>2</sup> to 1.41 and 0.97 kJ/m<sup>2</sup>, respectively. FE simulation results indicate that the increase in the fracture process zone (FPZ) area plays a crucial role in contributing to the size effects observed in <i>G</i><sub>II<i>c</i></sub>. The ENF specimens exhibit a significant decrease in glass transition temperature (<i>T</i><sub><i>g</i></sub>) along with noticeable changes in fracture morphology. The <i>G</i><sub>II<i>c</i></sub> values obtained from NPC tests are significantly lower than those of unaged specimens. However, hygrothermal aging has no effect on the crack propagation behavior and <i>G</i><sub>II<i>c</i></sub> values in PC tests. These findings provide practical insights for designing and predicting the service life of composite components exposed to humid and high-temperature environments.</p>\\n </div>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"48 8\",\"pages\":\"3517-3527\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14690\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14690","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了厚复合材料II型层间断裂韧性(GIIc)的尺寸效应和湿热老化行为。实验结果表明,随着试件厚度的增加,NPC和PC试验的GIIc分别从0.99和0.64 kJ/m2增加到1.41和0.97 kJ/m2。有限元模拟结果表明,断裂过程区(FPZ)面积的增加对GIIc中观察到的尺寸效应起着至关重要的作用。ENF试样的玻璃化转变温度(Tg)显著降低,断口形貌发生明显变化。NPC试验获得的GIIc值明显低于未老化标本。然而,湿热时效对裂纹扩展行为和PC试验中的GIIc值没有影响。这些发现为设计和预测暴露在潮湿和高温环境下的复合材料部件的使用寿命提供了实用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Size Effects and Hygrothermal Aging on Mode II Interlaminar Fracture Toughness of Thick CFRP Composites

The size effects and hygrothermal aging behavior of Mode II interlaminar fracture toughness (GIIc) for thick composites are investigated. Experimental results demonstrate that increasing specimen thickness leads to a rise in GIIc for NPC and PC tests from 0.99 and 0.64 kJ/m2 to 1.41 and 0.97 kJ/m2, respectively. FE simulation results indicate that the increase in the fracture process zone (FPZ) area plays a crucial role in contributing to the size effects observed in GIIc. The ENF specimens exhibit a significant decrease in glass transition temperature (Tg) along with noticeable changes in fracture morphology. The GIIc values obtained from NPC tests are significantly lower than those of unaged specimens. However, hygrothermal aging has no effect on the crack propagation behavior and GIIc values in PC tests. These findings provide practical insights for designing and predicting the service life of composite components exposed to humid and high-temperature environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信