650℃表面机械轧制310S奥氏体不锈钢的疲劳行为及断裂机理

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Y. G. Wang, L. L. Wei, Z. J. Tan, S. X. Wang, J. Y. Yang, L. F. Yang, J. Chen
{"title":"650℃表面机械轧制310S奥氏体不锈钢的疲劳行为及断裂机理","authors":"Y. G. Wang,&nbsp;L. L. Wei,&nbsp;Z. J. Tan,&nbsp;S. X. Wang,&nbsp;J. Y. Yang,&nbsp;L. F. Yang,&nbsp;J. Chen","doi":"10.1111/ffe.14685","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study investigates the microstructure, residual stress stability, fatigue property, and fracture mechanism of a gradient structure specimen fabricated on 310S austenitic stainless steel via surface mechanical rolling treatment at 650°C. The gradient structure enhances yield strength and ultimate tensile strength by 100% and 12.4%, respectively. Fatigue strength improves across a wide strain amplitude range due to the gradient microstructure and multiaxial stress state. Fatigue ductility increases when Δ<i>ε</i>/2 &lt; 0.45% but decreases at higher strains. Compressive residual stress has minimal impact on fatigue properties due to rapid relaxation at 650°C. Fractography analysis reveals grain coarsening and sigma brittle phase precipitation after high-temperature fatigue. All fatigue cracks initiate in the oxide layer, driven by high stress concentrations at grain boundaries, leading to brittle intergranular and interfacial cracking. These findings highlight the role of the gradient structure in improving mechanical performance under elevated temperatures.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 8","pages":"3501-3516"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue Behavior and Fracture Mechanism of 310S Austenitic Stainless Steel Processed by Surface Mechanical Rolling Treatment at 650°C\",\"authors\":\"Y. G. Wang,&nbsp;L. L. Wei,&nbsp;Z. J. Tan,&nbsp;S. X. Wang,&nbsp;J. Y. Yang,&nbsp;L. F. Yang,&nbsp;J. Chen\",\"doi\":\"10.1111/ffe.14685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study investigates the microstructure, residual stress stability, fatigue property, and fracture mechanism of a gradient structure specimen fabricated on 310S austenitic stainless steel via surface mechanical rolling treatment at 650°C. The gradient structure enhances yield strength and ultimate tensile strength by 100% and 12.4%, respectively. Fatigue strength improves across a wide strain amplitude range due to the gradient microstructure and multiaxial stress state. Fatigue ductility increases when Δ<i>ε</i>/2 &lt; 0.45% but decreases at higher strains. Compressive residual stress has minimal impact on fatigue properties due to rapid relaxation at 650°C. Fractography analysis reveals grain coarsening and sigma brittle phase precipitation after high-temperature fatigue. All fatigue cracks initiate in the oxide layer, driven by high stress concentrations at grain boundaries, leading to brittle intergranular and interfacial cracking. These findings highlight the role of the gradient structure in improving mechanical performance under elevated temperatures.</p>\\n </div>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"48 8\",\"pages\":\"3501-3516\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14685\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14685","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了310S奥氏体不锈钢经650℃表面机械轧制制备的梯度组织试样的显微组织、残余应力稳定性、疲劳性能和断裂机制。梯度结构使屈服强度和极限抗拉强度分别提高了100%和12.4%。由于梯度组织和多轴应力状态,在较宽的应变幅度范围内,疲劳强度得到提高。当Δε/2 <; 0.45%时,疲劳延展性增加,但在更高应变时降低。压缩残余应力对疲劳性能的影响最小,因为在650°C时快速松弛。断口分析表明,高温疲劳后晶粒粗化,sigma脆性相析出。所有疲劳裂纹都起源于氧化层,由晶界处的高应力集中驱动,导致脆性晶间和界面开裂。这些发现突出了梯度结构在提高高温下机械性能方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fatigue Behavior and Fracture Mechanism of 310S Austenitic Stainless Steel Processed by Surface Mechanical Rolling Treatment at 650°C

This study investigates the microstructure, residual stress stability, fatigue property, and fracture mechanism of a gradient structure specimen fabricated on 310S austenitic stainless steel via surface mechanical rolling treatment at 650°C. The gradient structure enhances yield strength and ultimate tensile strength by 100% and 12.4%, respectively. Fatigue strength improves across a wide strain amplitude range due to the gradient microstructure and multiaxial stress state. Fatigue ductility increases when Δε/2 < 0.45% but decreases at higher strains. Compressive residual stress has minimal impact on fatigue properties due to rapid relaxation at 650°C. Fractography analysis reveals grain coarsening and sigma brittle phase precipitation after high-temperature fatigue. All fatigue cracks initiate in the oxide layer, driven by high stress concentrations at grain boundaries, leading to brittle intergranular and interfacial cracking. These findings highlight the role of the gradient structure in improving mechanical performance under elevated temperatures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信