{"title":"增强肌醇焦磷酸在植物中的积累改变了生长、磷酸盐稳态和昆虫的食草性","authors":"Caitlin Cridland, Ashlynn Russo, Branch Craige, Janet Donahue, Xuemei Missi Zhang, Madison Payne, Glenda Gillaspy, Catherine Freed","doi":"10.1111/tpj.70315","DOIUrl":null,"url":null,"abstract":"<p>Phosphate (P<i>i</i>) is a critical nutrient for plants and is often a limiting factor in food production, as many agricultural soils are limited in available P<i>i</i>. Inositol pyrophosphates (PP-InsPs) are signaling molecules involved in P<i>i</i> sensing and jasmonic acid (JA)-regulated plant defense. Here, we report that overexpression of 1,3,4-trisphosphate 5/6-kinase 1 (ITPK1) and the kinase domain of the dual-domain diphosphoinositol pentakisphosphate kinase 2 (VIP2KD) in <i>Arabidopsis thaliana</i> results in unique elevations in PP-InsPs, accompanied by altered leaf growth and senescence patterns, as well as delayed time to flowering. While plants overexpressing ITPK1 and VIP2KD (ITPK1 OX and VIP2KD OX) accumulated significantly lower levels of P<i>i</i>, transcriptomic and qRT-PCR analysis revealed that these plants showed elevated expression of P<i>i</i> starvation response genes. Our transcriptomic analysis also revealed ITPK1 OX and VIP2KD OX showed a significant enrichment in differentially expressed genes relating to plant defense and hypoxia. Of the two transgenic types, VIP2KD OX had significantly higher expression of more diverse plant defense-related differentially expressed genes and showed greater resistance to <i>Trichoplusia ni</i> compared to WT and ITPK1 OX plants. ITPK1 OX, although also having elevated PP-InsPs, was fed upon by insect larvae comparably to WT plants. Taken together, our data indicate the elevation of certain PP-InsPs may be a useful strategy for developing new traits in crop plants.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"123 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70315","citationCount":"0","resultStr":"{\"title\":\"Enhancing inositol pyrophosphate accumulation in plants alters growth, phosphate homeostasis, and insect herbivory\",\"authors\":\"Caitlin Cridland, Ashlynn Russo, Branch Craige, Janet Donahue, Xuemei Missi Zhang, Madison Payne, Glenda Gillaspy, Catherine Freed\",\"doi\":\"10.1111/tpj.70315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phosphate (P<i>i</i>) is a critical nutrient for plants and is often a limiting factor in food production, as many agricultural soils are limited in available P<i>i</i>. Inositol pyrophosphates (PP-InsPs) are signaling molecules involved in P<i>i</i> sensing and jasmonic acid (JA)-regulated plant defense. Here, we report that overexpression of 1,3,4-trisphosphate 5/6-kinase 1 (ITPK1) and the kinase domain of the dual-domain diphosphoinositol pentakisphosphate kinase 2 (VIP2KD) in <i>Arabidopsis thaliana</i> results in unique elevations in PP-InsPs, accompanied by altered leaf growth and senescence patterns, as well as delayed time to flowering. While plants overexpressing ITPK1 and VIP2KD (ITPK1 OX and VIP2KD OX) accumulated significantly lower levels of P<i>i</i>, transcriptomic and qRT-PCR analysis revealed that these plants showed elevated expression of P<i>i</i> starvation response genes. Our transcriptomic analysis also revealed ITPK1 OX and VIP2KD OX showed a significant enrichment in differentially expressed genes relating to plant defense and hypoxia. Of the two transgenic types, VIP2KD OX had significantly higher expression of more diverse plant defense-related differentially expressed genes and showed greater resistance to <i>Trichoplusia ni</i> compared to WT and ITPK1 OX plants. ITPK1 OX, although also having elevated PP-InsPs, was fed upon by insect larvae comparably to WT plants. Taken together, our data indicate the elevation of certain PP-InsPs may be a useful strategy for developing new traits in crop plants.</p>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70315\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70315\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70315","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Enhancing inositol pyrophosphate accumulation in plants alters growth, phosphate homeostasis, and insect herbivory
Phosphate (Pi) is a critical nutrient for plants and is often a limiting factor in food production, as many agricultural soils are limited in available Pi. Inositol pyrophosphates (PP-InsPs) are signaling molecules involved in Pi sensing and jasmonic acid (JA)-regulated plant defense. Here, we report that overexpression of 1,3,4-trisphosphate 5/6-kinase 1 (ITPK1) and the kinase domain of the dual-domain diphosphoinositol pentakisphosphate kinase 2 (VIP2KD) in Arabidopsis thaliana results in unique elevations in PP-InsPs, accompanied by altered leaf growth and senescence patterns, as well as delayed time to flowering. While plants overexpressing ITPK1 and VIP2KD (ITPK1 OX and VIP2KD OX) accumulated significantly lower levels of Pi, transcriptomic and qRT-PCR analysis revealed that these plants showed elevated expression of Pi starvation response genes. Our transcriptomic analysis also revealed ITPK1 OX and VIP2KD OX showed a significant enrichment in differentially expressed genes relating to plant defense and hypoxia. Of the two transgenic types, VIP2KD OX had significantly higher expression of more diverse plant defense-related differentially expressed genes and showed greater resistance to Trichoplusia ni compared to WT and ITPK1 OX plants. ITPK1 OX, although also having elevated PP-InsPs, was fed upon by insect larvae comparably to WT plants. Taken together, our data indicate the elevation of certain PP-InsPs may be a useful strategy for developing new traits in crop plants.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.