{"title":"微波功率传输与收获中的多波束成形技术","authors":"Fábio Silva;Pedro Pinho;Nuno Borges Carvalho","doi":"10.1109/JMW.2025.3575342","DOIUrl":null,"url":null,"abstract":"The rise in popularity of the Internet of Things (IoT) has increased the need to power devices wirelessly, a process called Wireless Power Transfer (WPT), to avoid the usage of batteries, which present limited lifespans. In particular, Microwave Power Transfer (MPT), both Near-field (NF) and Far-field (FF), use Electromagnetic (EM) waves to transfer power between two points. However, these systems still present some downsides, mainly efficiency-wise. This paper explores the usage of Multibeam Antennas (MBAs), specifically Beamforming Network (BFN)-based ones, to improve the capabilities of traditional MPT and Radio Frequency Energy Harvesting (RFEH) systems. The paper starts by introducing the usage of MPT in IoT applications and how MBAs could help solve some of them or at least mitigate them. Afterward, a general explanation of the typical MBAs architectures, including Passive Multibeam Antennas (PMBAs), Multibeam Phased-Array Antennas (MBPAAs), and Digital Multibeam Antennas (DMBAs) is presented, along with their advantages, drawbacks, and some emerging trends. After introducing the typical architectures of MBAs, a comprehensive literature survey is done around rectennas and MPT Transmitters (TXs). This approach allows us to understand better why some architectures are more present than others in both applications, highlighting the exclusive usage of PMBAs in rectennas due to them not using energy. To finalize the paper, using the literature survey done, some challenges associated with integrating MBAs in MPT and RFEH are presented, along with some works presenting ways to mitigate them.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"5 4","pages":"918-938"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11037249","citationCount":"0","resultStr":"{\"title\":\"Multibeam Beamforming Technology in Microwave Power Transfer and Harvesting\",\"authors\":\"Fábio Silva;Pedro Pinho;Nuno Borges Carvalho\",\"doi\":\"10.1109/JMW.2025.3575342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rise in popularity of the Internet of Things (IoT) has increased the need to power devices wirelessly, a process called Wireless Power Transfer (WPT), to avoid the usage of batteries, which present limited lifespans. In particular, Microwave Power Transfer (MPT), both Near-field (NF) and Far-field (FF), use Electromagnetic (EM) waves to transfer power between two points. However, these systems still present some downsides, mainly efficiency-wise. This paper explores the usage of Multibeam Antennas (MBAs), specifically Beamforming Network (BFN)-based ones, to improve the capabilities of traditional MPT and Radio Frequency Energy Harvesting (RFEH) systems. The paper starts by introducing the usage of MPT in IoT applications and how MBAs could help solve some of them or at least mitigate them. Afterward, a general explanation of the typical MBAs architectures, including Passive Multibeam Antennas (PMBAs), Multibeam Phased-Array Antennas (MBPAAs), and Digital Multibeam Antennas (DMBAs) is presented, along with their advantages, drawbacks, and some emerging trends. After introducing the typical architectures of MBAs, a comprehensive literature survey is done around rectennas and MPT Transmitters (TXs). This approach allows us to understand better why some architectures are more present than others in both applications, highlighting the exclusive usage of PMBAs in rectennas due to them not using energy. To finalize the paper, using the literature survey done, some challenges associated with integrating MBAs in MPT and RFEH are presented, along with some works presenting ways to mitigate them.\",\"PeriodicalId\":93296,\"journal\":{\"name\":\"IEEE journal of microwaves\",\"volume\":\"5 4\",\"pages\":\"918-938\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11037249\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal of microwaves\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11037249/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of microwaves","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11037249/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Multibeam Beamforming Technology in Microwave Power Transfer and Harvesting
The rise in popularity of the Internet of Things (IoT) has increased the need to power devices wirelessly, a process called Wireless Power Transfer (WPT), to avoid the usage of batteries, which present limited lifespans. In particular, Microwave Power Transfer (MPT), both Near-field (NF) and Far-field (FF), use Electromagnetic (EM) waves to transfer power between two points. However, these systems still present some downsides, mainly efficiency-wise. This paper explores the usage of Multibeam Antennas (MBAs), specifically Beamforming Network (BFN)-based ones, to improve the capabilities of traditional MPT and Radio Frequency Energy Harvesting (RFEH) systems. The paper starts by introducing the usage of MPT in IoT applications and how MBAs could help solve some of them or at least mitigate them. Afterward, a general explanation of the typical MBAs architectures, including Passive Multibeam Antennas (PMBAs), Multibeam Phased-Array Antennas (MBPAAs), and Digital Multibeam Antennas (DMBAs) is presented, along with their advantages, drawbacks, and some emerging trends. After introducing the typical architectures of MBAs, a comprehensive literature survey is done around rectennas and MPT Transmitters (TXs). This approach allows us to understand better why some architectures are more present than others in both applications, highlighting the exclusive usage of PMBAs in rectennas due to them not using energy. To finalize the paper, using the literature survey done, some challenges associated with integrating MBAs in MPT and RFEH are presented, along with some works presenting ways to mitigate them.