基于kan的汽车雷达大目标检测

Vinay Kulkarni;V. V. Reddy;Neha Maheshwari
{"title":"基于kan的汽车雷达大目标检测","authors":"Vinay Kulkarni;V. V. Reddy;Neha Maheshwari","doi":"10.1109/TRS.2025.3584994","DOIUrl":null,"url":null,"abstract":"This article presents a novel radar signal detection pipeline focused on detecting large targets such as cars and sports utility vehicles (SUVs). Traditional methods, such as ordered-statistic constant false alarm rate (OS-CFAR), commonly used in automotive radar, are designed for point or isotropic target models. These may not adequately capture the range-Doppler (RD) scattering patterns of larger targets, especially in high-resolution radar systems. Additional modules such as association and tracking are necessary to refine and consolidate the detections over multiple dwells. To address these limitations, we propose a detection technique based on the probability density function (pdf) of RD segments, leveraging the Kolmogorov–Arnold neural network (KAN) to learn the data and generate interpretable symbolic expressions for binary hypotheses. Beside the Monte Carlo study showing better performance for the proposed KAN expression over OS-CFAR, it is shown to exhibit a probability of detection (<inline-formula> <tex-math>$P_{D}$ </tex-math></inline-formula>) of 96% when transfer learned with field data. The false alarm rate (<inline-formula> <tex-math>$P_{\\mathrm {FA}}$ </tex-math></inline-formula>) is comparable with OS-CFAR designed with <inline-formula> <tex-math>$P_{\\mathrm {FA}}=10^{-6}$ </tex-math></inline-formula>. The study also examines how the number of pdf bins in the RD segment affects the performance of KAN-based detection.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"963-968"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KAN-Powered Large-Target Detection for Automotive Radar\",\"authors\":\"Vinay Kulkarni;V. V. Reddy;Neha Maheshwari\",\"doi\":\"10.1109/TRS.2025.3584994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a novel radar signal detection pipeline focused on detecting large targets such as cars and sports utility vehicles (SUVs). Traditional methods, such as ordered-statistic constant false alarm rate (OS-CFAR), commonly used in automotive radar, are designed for point or isotropic target models. These may not adequately capture the range-Doppler (RD) scattering patterns of larger targets, especially in high-resolution radar systems. Additional modules such as association and tracking are necessary to refine and consolidate the detections over multiple dwells. To address these limitations, we propose a detection technique based on the probability density function (pdf) of RD segments, leveraging the Kolmogorov–Arnold neural network (KAN) to learn the data and generate interpretable symbolic expressions for binary hypotheses. Beside the Monte Carlo study showing better performance for the proposed KAN expression over OS-CFAR, it is shown to exhibit a probability of detection (<inline-formula> <tex-math>$P_{D}$ </tex-math></inline-formula>) of 96% when transfer learned with field data. The false alarm rate (<inline-formula> <tex-math>$P_{\\\\mathrm {FA}}$ </tex-math></inline-formula>) is comparable with OS-CFAR designed with <inline-formula> <tex-math>$P_{\\\\mathrm {FA}}=10^{-6}$ </tex-math></inline-formula>. The study also examines how the number of pdf bins in the RD segment affects the performance of KAN-based detection.\",\"PeriodicalId\":100645,\"journal\":{\"name\":\"IEEE Transactions on Radar Systems\",\"volume\":\"3 \",\"pages\":\"963-968\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radar Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11063409/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11063409/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新型的雷达信号检测管道,主要用于检测汽车、suv等大型目标。传统的方法,如汽车雷达中常用的有序统计常数虚警率(OS-CFAR),是针对点或各向同性目标模型设计的。这些可能无法充分捕获较大目标的距离-多普勒(RD)散射模式,特别是在高分辨率雷达系统中。额外的模块,如关联和跟踪是必要的,以完善和巩固多个驻留的检测。为了解决这些限制,我们提出了一种基于RD片段概率密度函数(pdf)的检测技术,利用Kolmogorov-Arnold神经网络(KAN)来学习数据并为二元假设生成可解释的符号表达式。除了蒙特卡罗研究表明所提出的KAN表达式优于OS-CFAR的性能外,当使用现场数据进行迁移学习时,它显示出96%的检测概率($P_{D}$)。虚警率($P_{\mathrm {FA}}$)与$P_{\mathrm {FA}}=10^{-6}$设计的OS-CFAR相当。该研究还研究了RD段中pdf箱的数量如何影响基于kan的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KAN-Powered Large-Target Detection for Automotive Radar
This article presents a novel radar signal detection pipeline focused on detecting large targets such as cars and sports utility vehicles (SUVs). Traditional methods, such as ordered-statistic constant false alarm rate (OS-CFAR), commonly used in automotive radar, are designed for point or isotropic target models. These may not adequately capture the range-Doppler (RD) scattering patterns of larger targets, especially in high-resolution radar systems. Additional modules such as association and tracking are necessary to refine and consolidate the detections over multiple dwells. To address these limitations, we propose a detection technique based on the probability density function (pdf) of RD segments, leveraging the Kolmogorov–Arnold neural network (KAN) to learn the data and generate interpretable symbolic expressions for binary hypotheses. Beside the Monte Carlo study showing better performance for the proposed KAN expression over OS-CFAR, it is shown to exhibit a probability of detection ( $P_{D}$ ) of 96% when transfer learned with field data. The false alarm rate ( $P_{\mathrm {FA}}$ ) is comparable with OS-CFAR designed with $P_{\mathrm {FA}}=10^{-6}$ . The study also examines how the number of pdf bins in the RD segment affects the performance of KAN-based detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信