利用uEXPLORER全身系统进行短时间PET成像的CT增强加权自适应网络

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Fanting Luo;Hongyan Tang;Wenbo Li;Haiyan Wang;Ruohua Chen;Jianjun Liu;Chao Zhou;Xu Zhang;Wei Fan;Yumo Zhao;Yongfeng Yang;Hairong Zheng;Dong Liang;Shengping Liu;Zhenxing Huang;Zhanli Hu
{"title":"利用uEXPLORER全身系统进行短时间PET成像的CT增强加权自适应网络","authors":"Fanting Luo;Hongyan Tang;Wenbo Li;Haiyan Wang;Ruohua Chen;Jianjun Liu;Chao Zhou;Xu Zhang;Wei Fan;Yumo Zhao;Yongfeng Yang;Hairong Zheng;Dong Liang;Shengping Liu;Zhenxing Huang;Zhanli Hu","doi":"10.1109/TRPMS.2025.3540112","DOIUrl":null,"url":null,"abstract":"The total-body positron emission tomography (PET) scanning time is typically reduced to mitigate motion artifacts, yet this can compromise image quality. Current approaches often enhance PET resolution via CT guidance but overlook structural disparities across anatomical sites. Therefore, this article introduces an enhanced Wasserstein generative adversarial network with gradient penalty (WGAN-GP), integrating anatomical information as attributes to enhance quality of multiple short-duration (2.5%, 5%, and 10%) total-body PET images simultaneously. The proposed method is a weight-adaptive three-channel network for different regions, integrating PET/CT features and attributes to optimize short-duration PET image generation. peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), root mean square error (RMSE), and standard uptake value (SUV) are analyzed within whole images and regions of interests (ROIs) to compare proposed method with other networks. The results on the 18F-FDG PET dataset show the method achieves better-visual effects and metrics (like SSIM: 0.94±0.04 for 2.5%; 0.95±0.04 for 5%; and 0.96±0.04 for 10%) across total-body than others. Furthermore, the SUV-maximum and activity distributions of ROIs are closest to standard-duration PET. Additionally, the method demonstrates robustness under varying degrees of 18F-FDG PET/CT misalignment and in the PSMA PET/CT dataset. The proposed method offers reliable technical support for clinical diagnosis via short-duration total-body PET.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 6","pages":"800-814"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weight-Adaptive Network With CT Enhancement for Short-Duration PET Imaging Utilizing the uEXPLORER Total-Body System\",\"authors\":\"Fanting Luo;Hongyan Tang;Wenbo Li;Haiyan Wang;Ruohua Chen;Jianjun Liu;Chao Zhou;Xu Zhang;Wei Fan;Yumo Zhao;Yongfeng Yang;Hairong Zheng;Dong Liang;Shengping Liu;Zhenxing Huang;Zhanli Hu\",\"doi\":\"10.1109/TRPMS.2025.3540112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The total-body positron emission tomography (PET) scanning time is typically reduced to mitigate motion artifacts, yet this can compromise image quality. Current approaches often enhance PET resolution via CT guidance but overlook structural disparities across anatomical sites. Therefore, this article introduces an enhanced Wasserstein generative adversarial network with gradient penalty (WGAN-GP), integrating anatomical information as attributes to enhance quality of multiple short-duration (2.5%, 5%, and 10%) total-body PET images simultaneously. The proposed method is a weight-adaptive three-channel network for different regions, integrating PET/CT features and attributes to optimize short-duration PET image generation. peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), root mean square error (RMSE), and standard uptake value (SUV) are analyzed within whole images and regions of interests (ROIs) to compare proposed method with other networks. The results on the 18F-FDG PET dataset show the method achieves better-visual effects and metrics (like SSIM: 0.94±0.04 for 2.5%; 0.95±0.04 for 5%; and 0.96±0.04 for 10%) across total-body than others. Furthermore, the SUV-maximum and activity distributions of ROIs are closest to standard-duration PET. Additionally, the method demonstrates robustness under varying degrees of 18F-FDG PET/CT misalignment and in the PSMA PET/CT dataset. The proposed method offers reliable technical support for clinical diagnosis via short-duration total-body PET.\",\"PeriodicalId\":46807,\"journal\":{\"name\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"volume\":\"9 6\",\"pages\":\"800-814\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10879087/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10879087/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

全身正电子发射断层扫描(PET)扫描时间通常会减少,以减轻运动伪影,但这可能会损害图像质量。目前的方法通常通过CT引导提高PET分辨率,但忽略了解剖部位的结构差异。因此,本文引入了一种带有梯度惩罚的增强型Wasserstein生成对抗网络(WGAN-GP),将解剖信息作为属性集成,以同时提高多个短持续时间(2.5%、5%和10%)全身PET图像的质量。该方法是一种针对不同区域的权重自适应三通道网络,结合PET/CT的特征和属性来优化短时间PET图像的生成。分析了峰值信噪比(PSNR)、结构相似指数(SSIM)、均方根误差(RMSE)和标准摄取值(SUV)在整幅图像和兴趣区域(roi)内的变化,并与其他网络进行了比较。在18F-FDG PET数据集上的结果表明,该方法获得了更好的视觉效果和指标(2.5%的SSIM: 0.94±0.04;5%为0.95±0.04;10%为0.96±0.04)。此外,roi的suv最大值和活度分布与标准持续时间PET最接近。此外,该方法在不同程度的18F-FDG PET/CT偏差和PSMA PET/CT数据集下显示了鲁棒性。该方法为短时间全身PET临床诊断提供了可靠的技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weight-Adaptive Network With CT Enhancement for Short-Duration PET Imaging Utilizing the uEXPLORER Total-Body System
The total-body positron emission tomography (PET) scanning time is typically reduced to mitigate motion artifacts, yet this can compromise image quality. Current approaches often enhance PET resolution via CT guidance but overlook structural disparities across anatomical sites. Therefore, this article introduces an enhanced Wasserstein generative adversarial network with gradient penalty (WGAN-GP), integrating anatomical information as attributes to enhance quality of multiple short-duration (2.5%, 5%, and 10%) total-body PET images simultaneously. The proposed method is a weight-adaptive three-channel network for different regions, integrating PET/CT features and attributes to optimize short-duration PET image generation. peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), root mean square error (RMSE), and standard uptake value (SUV) are analyzed within whole images and regions of interests (ROIs) to compare proposed method with other networks. The results on the 18F-FDG PET dataset show the method achieves better-visual effects and metrics (like SSIM: 0.94±0.04 for 2.5%; 0.95±0.04 for 5%; and 0.96±0.04 for 10%) across total-body than others. Furthermore, the SUV-maximum and activity distributions of ROIs are closest to standard-duration PET. Additionally, the method demonstrates robustness under varying degrees of 18F-FDG PET/CT misalignment and in the PSMA PET/CT dataset. The proposed method offers reliable technical support for clinical diagnosis via short-duration total-body PET.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信