Hang Wang , Yanru Wang , Jianguo Zhang , Dapeng Zhou
{"title":"基于C0粗糙几何的Lp粗糙Baum-Connes猜想","authors":"Hang Wang , Yanru Wang , Jianguo Zhang , Dapeng Zhou","doi":"10.1016/j.topol.2025.109518","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> coarse Baum-Connes conjecture for <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> via <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> coarse structure, which is a refinement of the bounded coarse structure on a metric space. We prove that the <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> version of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> coarse Baum-Connes conjecture holds for a finite-dimensional simplicial complex equipped with a uniform spherical metric. Using this result, we construct an obstruction group for the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> coarse Baum-Connes conjecture. As an application, we show that the obstruction group vanishes under the assumption of finite asymptotic dimension, thereby providing a new proof of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> coarse Baum-Connes conjecture in this case.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"373 ","pages":"Article 109518"},"PeriodicalIF":0.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lp coarse Baum-Connes conjecture via C0 coarse geometry\",\"authors\":\"Hang Wang , Yanru Wang , Jianguo Zhang , Dapeng Zhou\",\"doi\":\"10.1016/j.topol.2025.109518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> coarse Baum-Connes conjecture for <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> via <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> coarse structure, which is a refinement of the bounded coarse structure on a metric space. We prove that the <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> version of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> coarse Baum-Connes conjecture holds for a finite-dimensional simplicial complex equipped with a uniform spherical metric. Using this result, we construct an obstruction group for the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> coarse Baum-Connes conjecture. As an application, we show that the obstruction group vanishes under the assumption of finite asymptotic dimension, thereby providing a new proof of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> coarse Baum-Connes conjecture in this case.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"373 \",\"pages\":\"Article 109518\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864125003165\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125003165","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Lp coarse Baum-Connes conjecture via C0 coarse geometry
In this paper, we investigate the coarse Baum-Connes conjecture for via coarse structure, which is a refinement of the bounded coarse structure on a metric space. We prove that the version of the coarse Baum-Connes conjecture holds for a finite-dimensional simplicial complex equipped with a uniform spherical metric. Using this result, we construct an obstruction group for the coarse Baum-Connes conjecture. As an application, we show that the obstruction group vanishes under the assumption of finite asymptotic dimension, thereby providing a new proof of the coarse Baum-Connes conjecture in this case.
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.