用于太阳能热光伏应用的超材料宽带吸收体和选择性发射器的设计

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Karim Errajraji , Nawfal Jebbor , Mohamed Boukili , Mouhssine Elbathaoui , Abdelkrim Zeghari
{"title":"用于太阳能热光伏应用的超材料宽带吸收体和选择性发射器的设计","authors":"Karim Errajraji ,&nbsp;Nawfal Jebbor ,&nbsp;Mohamed Boukili ,&nbsp;Mouhssine Elbathaoui ,&nbsp;Abdelkrim Zeghari","doi":"10.1016/j.solener.2025.113758","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates a solar thermophotovoltaic (STPV) system composed of a broadband absorber, a selective emitter, and a low-bandgap photovoltaic (PV) cell. The finite element method (FEM) is used to simulate the spectral absorption and emission properties of both the absorber and the emitter. The proposed metamaterial (MTM) absorber, based on tantalum (Ta), nickel (Ni), and silicon dioxide (SiO<sub>2</sub>), exhibits an absorption rate exceeding 90 % in the 250 nm – 1500 nm range, covering the UV, visible, and near-infrared (NIR) regions, and surpasses 99 % in the visible spectrum. Additionally, it achieves an absorption efficiency of 97.31 % under the AM1.5 spectrum and a thermal emission efficiency of 93.81 % at 1600 K. An MTM selective emitter, composed of Ta and SiO<sub>2</sub>, is designed to reshape the thermal spectrum for InGaAsSb, GaSb, and InAs PV cells. The output power reaches 0.67, 1.54, and 1.96 W/cm<sup>2</sup> for InGaAsSb, GaSb, and InAs cells, increasing to 2.14, 2.62, and 3.11 W/cm<sup>2</sup> for InAs/InGaAsSb, InGaAsSb/GaSb, and InAs/InGaAsSb/GaSb tandem cells at 1600 K. With the absorber-emitter configuration forming the STPV intermediate structure, the system achieves 18.80 %, 14.80 %, and 6.48 % efficiency for InGaAsSb, GaSb, and InAs cells at 1600 K and a concentration (C) of 5000. Moreover, efficiencies exceeding 20 % are attained from 1400 K with C = 4500 for InAs/InGaAsSb cells, from 1600 K with C = 1920 for InGaAsSb/GaSb cells, and from 1400 K with C = 1740 for InAs/InGaAsSb/GaSb cells. These findings highlight the efficiency and adaptability of the proposed system, providing a basis for further STPV performance enhancements.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"300 ","pages":"Article 113758"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a metamaterial-based broadband absorber and selective emitter for solar thermophotovoltaic applications\",\"authors\":\"Karim Errajraji ,&nbsp;Nawfal Jebbor ,&nbsp;Mohamed Boukili ,&nbsp;Mouhssine Elbathaoui ,&nbsp;Abdelkrim Zeghari\",\"doi\":\"10.1016/j.solener.2025.113758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates a solar thermophotovoltaic (STPV) system composed of a broadband absorber, a selective emitter, and a low-bandgap photovoltaic (PV) cell. The finite element method (FEM) is used to simulate the spectral absorption and emission properties of both the absorber and the emitter. The proposed metamaterial (MTM) absorber, based on tantalum (Ta), nickel (Ni), and silicon dioxide (SiO<sub>2</sub>), exhibits an absorption rate exceeding 90 % in the 250 nm – 1500 nm range, covering the UV, visible, and near-infrared (NIR) regions, and surpasses 99 % in the visible spectrum. Additionally, it achieves an absorption efficiency of 97.31 % under the AM1.5 spectrum and a thermal emission efficiency of 93.81 % at 1600 K. An MTM selective emitter, composed of Ta and SiO<sub>2</sub>, is designed to reshape the thermal spectrum for InGaAsSb, GaSb, and InAs PV cells. The output power reaches 0.67, 1.54, and 1.96 W/cm<sup>2</sup> for InGaAsSb, GaSb, and InAs cells, increasing to 2.14, 2.62, and 3.11 W/cm<sup>2</sup> for InAs/InGaAsSb, InGaAsSb/GaSb, and InAs/InGaAsSb/GaSb tandem cells at 1600 K. With the absorber-emitter configuration forming the STPV intermediate structure, the system achieves 18.80 %, 14.80 %, and 6.48 % efficiency for InGaAsSb, GaSb, and InAs cells at 1600 K and a concentration (C) of 5000. Moreover, efficiencies exceeding 20 % are attained from 1400 K with C = 4500 for InAs/InGaAsSb cells, from 1600 K with C = 1920 for InGaAsSb/GaSb cells, and from 1400 K with C = 1740 for InAs/InGaAsSb/GaSb cells. These findings highlight the efficiency and adaptability of the proposed system, providing a basis for further STPV performance enhancements.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"300 \",\"pages\":\"Article 113758\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X25005213\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25005213","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种由宽带吸收体、选择性发射体和低带隙光伏电池组成的太阳能热光伏(STPV)系统。采用有限元法模拟了吸收体和发射体的光谱吸收和发射特性。所提出的基于钽(Ta)、镍(Ni)和二氧化硅(SiO2)的超材料(MTM)吸收体在250 nm - 1500 nm范围内的吸收率超过90%,覆盖了紫外、可见光和近红外(NIR)区域,在可见光谱中吸收率超过99%。在AM1.5光谱下的吸收效率为97.31%,在1600k时的热发射效率为93.81%。设计了一种由Ta和SiO2组成的MTM选择性发射极,用于重塑InGaAsSb, GaSb和InAs光伏电池的热光谱。在1600 K时,InGaAsSb、GaSb和InAs的输出功率分别为0.67、1.54和1.96 W/cm2, InAs/InGaAsSb、InGaAsSb/GaSb和InAs/InGaAsSb/GaSb串联电池的输出功率分别为2.14、2.62和3.11 W/cm2。利用吸收-发射结构形成STPV中间结构,该系统在1600 K、5000浓度(C)下对InGaAsSb、GaSb和InAs电池的效率分别达到18.80%、14.80%和6.48%。此外,InAs/InGaAsSb电池在1400k、C = 4500、InGaAsSb/GaSb电池在1600k、C = 1920和InAs/InGaAsSb/GaSb电池在1400k、C = 1740时的效率均超过20%。这些发现突出了所提出系统的效率和适应性,为进一步提高STPV性能提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a metamaterial-based broadband absorber and selective emitter for solar thermophotovoltaic applications
This paper investigates a solar thermophotovoltaic (STPV) system composed of a broadband absorber, a selective emitter, and a low-bandgap photovoltaic (PV) cell. The finite element method (FEM) is used to simulate the spectral absorption and emission properties of both the absorber and the emitter. The proposed metamaterial (MTM) absorber, based on tantalum (Ta), nickel (Ni), and silicon dioxide (SiO2), exhibits an absorption rate exceeding 90 % in the 250 nm – 1500 nm range, covering the UV, visible, and near-infrared (NIR) regions, and surpasses 99 % in the visible spectrum. Additionally, it achieves an absorption efficiency of 97.31 % under the AM1.5 spectrum and a thermal emission efficiency of 93.81 % at 1600 K. An MTM selective emitter, composed of Ta and SiO2, is designed to reshape the thermal spectrum for InGaAsSb, GaSb, and InAs PV cells. The output power reaches 0.67, 1.54, and 1.96 W/cm2 for InGaAsSb, GaSb, and InAs cells, increasing to 2.14, 2.62, and 3.11 W/cm2 for InAs/InGaAsSb, InGaAsSb/GaSb, and InAs/InGaAsSb/GaSb tandem cells at 1600 K. With the absorber-emitter configuration forming the STPV intermediate structure, the system achieves 18.80 %, 14.80 %, and 6.48 % efficiency for InGaAsSb, GaSb, and InAs cells at 1600 K and a concentration (C) of 5000. Moreover, efficiencies exceeding 20 % are attained from 1400 K with C = 4500 for InAs/InGaAsSb cells, from 1600 K with C = 1920 for InGaAsSb/GaSb cells, and from 1400 K with C = 1740 for InAs/InGaAsSb/GaSb cells. These findings highlight the efficiency and adaptability of the proposed system, providing a basis for further STPV performance enhancements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信