{"title":"激光熔覆钼合金钨铬钴合金涂层对SS304表面高温耐磨性的增强","authors":"C.R. Aprameya , Sharnappa Joladarashi , M.R. Ramesh","doi":"10.1016/j.surfcoat.2025.132457","DOIUrl":null,"url":null,"abstract":"<div><div>Severe wear often limits the high-temperature durability of SS304 components, necessitating the development of surface-engineered solutions. In this investigation, Mo-reinforced Stellite 6 claddings were developed using Laser Directed Energy Deposition (L-DED) to provide enhanced surface protection. Claddings with (3, 6, and 9 wt%) Mo reinforcement enhanced hardness by 2.9, 3.1, and 3.3 times, respectively, compared to the SS304 substrate. This improvement is attributed to Mo-induced solid solution strengthening and the formation of hard intermetallic phases. Dry sliding wear tests were conducted at RT and 600 °C under (10 and 20 N) loads. Wear characterisation of the clads was performed using OM, XRD, FE-SEM, EDX, and Raman spectroscopy. At RT, claddings primarily exhibited abrasive wear with minor plastic deformation. However, at 600 °C, the wear mechanism evolved into a combination of severe adhesive, oxidative, abrasive, and plastic deformation modes, with oxidative wear governing the tribological behavior. Stellite 6 with 9 wt% Mo clads exhibited better tribological performance than the other two variants, owing to the development of oxide glaze layers of Cr<sub>2</sub>O<sub>3</sub>, NiO, CoO<sub>2</sub>, and Co<sub>3</sub>O<sub>4</sub>. Enhanced performance of the claddings is attributed to solid solution strengthening, Cr-rich carbide formation, increased dislocation density, and the L-DED technology enabling refined microstructure and strong metallurgical bonding. These findings highlight the potential for further advancements in Mo-reinforced Stellite 6 L-DED claddings for high-temperature wear applications.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"513 ","pages":"Article 132457"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface enhancement of SS304 for high-temperature wear resistance using laser cladded Mo-alloyed stellite 6 coatings\",\"authors\":\"C.R. Aprameya , Sharnappa Joladarashi , M.R. Ramesh\",\"doi\":\"10.1016/j.surfcoat.2025.132457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Severe wear often limits the high-temperature durability of SS304 components, necessitating the development of surface-engineered solutions. In this investigation, Mo-reinforced Stellite 6 claddings were developed using Laser Directed Energy Deposition (L-DED) to provide enhanced surface protection. Claddings with (3, 6, and 9 wt%) Mo reinforcement enhanced hardness by 2.9, 3.1, and 3.3 times, respectively, compared to the SS304 substrate. This improvement is attributed to Mo-induced solid solution strengthening and the formation of hard intermetallic phases. Dry sliding wear tests were conducted at RT and 600 °C under (10 and 20 N) loads. Wear characterisation of the clads was performed using OM, XRD, FE-SEM, EDX, and Raman spectroscopy. At RT, claddings primarily exhibited abrasive wear with minor plastic deformation. However, at 600 °C, the wear mechanism evolved into a combination of severe adhesive, oxidative, abrasive, and plastic deformation modes, with oxidative wear governing the tribological behavior. Stellite 6 with 9 wt% Mo clads exhibited better tribological performance than the other two variants, owing to the development of oxide glaze layers of Cr<sub>2</sub>O<sub>3</sub>, NiO, CoO<sub>2</sub>, and Co<sub>3</sub>O<sub>4</sub>. Enhanced performance of the claddings is attributed to solid solution strengthening, Cr-rich carbide formation, increased dislocation density, and the L-DED technology enabling refined microstructure and strong metallurgical bonding. These findings highlight the potential for further advancements in Mo-reinforced Stellite 6 L-DED claddings for high-temperature wear applications.</div></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":\"513 \",\"pages\":\"Article 132457\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0257897225007315\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897225007315","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Surface enhancement of SS304 for high-temperature wear resistance using laser cladded Mo-alloyed stellite 6 coatings
Severe wear often limits the high-temperature durability of SS304 components, necessitating the development of surface-engineered solutions. In this investigation, Mo-reinforced Stellite 6 claddings were developed using Laser Directed Energy Deposition (L-DED) to provide enhanced surface protection. Claddings with (3, 6, and 9 wt%) Mo reinforcement enhanced hardness by 2.9, 3.1, and 3.3 times, respectively, compared to the SS304 substrate. This improvement is attributed to Mo-induced solid solution strengthening and the formation of hard intermetallic phases. Dry sliding wear tests were conducted at RT and 600 °C under (10 and 20 N) loads. Wear characterisation of the clads was performed using OM, XRD, FE-SEM, EDX, and Raman spectroscopy. At RT, claddings primarily exhibited abrasive wear with minor plastic deformation. However, at 600 °C, the wear mechanism evolved into a combination of severe adhesive, oxidative, abrasive, and plastic deformation modes, with oxidative wear governing the tribological behavior. Stellite 6 with 9 wt% Mo clads exhibited better tribological performance than the other two variants, owing to the development of oxide glaze layers of Cr2O3, NiO, CoO2, and Co3O4. Enhanced performance of the claddings is attributed to solid solution strengthening, Cr-rich carbide formation, increased dislocation density, and the L-DED technology enabling refined microstructure and strong metallurgical bonding. These findings highlight the potential for further advancements in Mo-reinforced Stellite 6 L-DED claddings for high-temperature wear applications.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.