{"title":"利用启发式算法和路径选择行为模拟最优洪水疏散","authors":"Housseyn Chebika , Guoqiang Shen , Haoying Han , Mahmoud Mabrouk , Brahim Nouibat","doi":"10.1016/j.simpat.2025.103167","DOIUrl":null,"url":null,"abstract":"<div><div>Effective path planning in flooding emergency rescue scenarios is essential for ensuring timely evacuation while minimizing safety risks. Conventional path-planning algorithms often prioritize the shortest or most cost-efficient routes, potentially neglecting safety considerations. To address this limitation, this study introduces an improved path-planning method using a behavior-based A-star (A*) algorithm designed for evacuation scenarios. A cellular automata (CA) environment is applied to address common challenges associated with traditional A* algorithms, including path inefficiencies, longer distances, and difficulties in handling dynamic flood environments. The key innovation of this study is the optimization of a heuristic function by integrating depth sensitivity perception (DSP), which directly influences evacuation behavior by prioritizing safer paths based on real-time water depth assessments during path selection. Experimental results across diverse flood scenarios demonstrate that the optimized A* algorithm significantly outperforms traditional A-star and Dijkstra’s algorithms, achieving reductions in explored nodes by 90.06 % and 93.13 %, lowering safety risks, and shortening computational times by 87.65 % and 88.06 %, respectively. These findings validate the efficacy of the depth-sensitive heuristic in enhancing evacuation pathfinding within complex flood environments.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"144 ","pages":"Article 103167"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating optimal flood evacuation using heuristic algorithms and path-choice behaviors\",\"authors\":\"Housseyn Chebika , Guoqiang Shen , Haoying Han , Mahmoud Mabrouk , Brahim Nouibat\",\"doi\":\"10.1016/j.simpat.2025.103167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Effective path planning in flooding emergency rescue scenarios is essential for ensuring timely evacuation while minimizing safety risks. Conventional path-planning algorithms often prioritize the shortest or most cost-efficient routes, potentially neglecting safety considerations. To address this limitation, this study introduces an improved path-planning method using a behavior-based A-star (A*) algorithm designed for evacuation scenarios. A cellular automata (CA) environment is applied to address common challenges associated with traditional A* algorithms, including path inefficiencies, longer distances, and difficulties in handling dynamic flood environments. The key innovation of this study is the optimization of a heuristic function by integrating depth sensitivity perception (DSP), which directly influences evacuation behavior by prioritizing safer paths based on real-time water depth assessments during path selection. Experimental results across diverse flood scenarios demonstrate that the optimized A* algorithm significantly outperforms traditional A-star and Dijkstra’s algorithms, achieving reductions in explored nodes by 90.06 % and 93.13 %, lowering safety risks, and shortening computational times by 87.65 % and 88.06 %, respectively. These findings validate the efficacy of the depth-sensitive heuristic in enhancing evacuation pathfinding within complex flood environments.</div></div>\",\"PeriodicalId\":49518,\"journal\":{\"name\":\"Simulation Modelling Practice and Theory\",\"volume\":\"144 \",\"pages\":\"Article 103167\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation Modelling Practice and Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569190X25001029\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X25001029","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Simulating optimal flood evacuation using heuristic algorithms and path-choice behaviors
Effective path planning in flooding emergency rescue scenarios is essential for ensuring timely evacuation while minimizing safety risks. Conventional path-planning algorithms often prioritize the shortest or most cost-efficient routes, potentially neglecting safety considerations. To address this limitation, this study introduces an improved path-planning method using a behavior-based A-star (A*) algorithm designed for evacuation scenarios. A cellular automata (CA) environment is applied to address common challenges associated with traditional A* algorithms, including path inefficiencies, longer distances, and difficulties in handling dynamic flood environments. The key innovation of this study is the optimization of a heuristic function by integrating depth sensitivity perception (DSP), which directly influences evacuation behavior by prioritizing safer paths based on real-time water depth assessments during path selection. Experimental results across diverse flood scenarios demonstrate that the optimized A* algorithm significantly outperforms traditional A-star and Dijkstra’s algorithms, achieving reductions in explored nodes by 90.06 % and 93.13 %, lowering safety risks, and shortening computational times by 87.65 % and 88.06 %, respectively. These findings validate the efficacy of the depth-sensitive heuristic in enhancing evacuation pathfinding within complex flood environments.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.