利用启发式算法和路径选择行为模拟最优洪水疏散

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Housseyn Chebika , Guoqiang Shen , Haoying Han , Mahmoud Mabrouk , Brahim Nouibat
{"title":"利用启发式算法和路径选择行为模拟最优洪水疏散","authors":"Housseyn Chebika ,&nbsp;Guoqiang Shen ,&nbsp;Haoying Han ,&nbsp;Mahmoud Mabrouk ,&nbsp;Brahim Nouibat","doi":"10.1016/j.simpat.2025.103167","DOIUrl":null,"url":null,"abstract":"<div><div>Effective path planning in flooding emergency rescue scenarios is essential for ensuring timely evacuation while minimizing safety risks. Conventional path-planning algorithms often prioritize the shortest or most cost-efficient routes, potentially neglecting safety considerations. To address this limitation, this study introduces an improved path-planning method using a behavior-based A-star (A*) algorithm designed for evacuation scenarios. A cellular automata (CA) environment is applied to address common challenges associated with traditional A* algorithms, including path inefficiencies, longer distances, and difficulties in handling dynamic flood environments. The key innovation of this study is the optimization of a heuristic function by integrating depth sensitivity perception (DSP), which directly influences evacuation behavior by prioritizing safer paths based on real-time water depth assessments during path selection. Experimental results across diverse flood scenarios demonstrate that the optimized A* algorithm significantly outperforms traditional A-star and Dijkstra’s algorithms, achieving reductions in explored nodes by 90.06 % and 93.13 %, lowering safety risks, and shortening computational times by 87.65 % and 88.06 %, respectively. These findings validate the efficacy of the depth-sensitive heuristic in enhancing evacuation pathfinding within complex flood environments.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"144 ","pages":"Article 103167"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating optimal flood evacuation using heuristic algorithms and path-choice behaviors\",\"authors\":\"Housseyn Chebika ,&nbsp;Guoqiang Shen ,&nbsp;Haoying Han ,&nbsp;Mahmoud Mabrouk ,&nbsp;Brahim Nouibat\",\"doi\":\"10.1016/j.simpat.2025.103167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Effective path planning in flooding emergency rescue scenarios is essential for ensuring timely evacuation while minimizing safety risks. Conventional path-planning algorithms often prioritize the shortest or most cost-efficient routes, potentially neglecting safety considerations. To address this limitation, this study introduces an improved path-planning method using a behavior-based A-star (A*) algorithm designed for evacuation scenarios. A cellular automata (CA) environment is applied to address common challenges associated with traditional A* algorithms, including path inefficiencies, longer distances, and difficulties in handling dynamic flood environments. The key innovation of this study is the optimization of a heuristic function by integrating depth sensitivity perception (DSP), which directly influences evacuation behavior by prioritizing safer paths based on real-time water depth assessments during path selection. Experimental results across diverse flood scenarios demonstrate that the optimized A* algorithm significantly outperforms traditional A-star and Dijkstra’s algorithms, achieving reductions in explored nodes by 90.06 % and 93.13 %, lowering safety risks, and shortening computational times by 87.65 % and 88.06 %, respectively. These findings validate the efficacy of the depth-sensitive heuristic in enhancing evacuation pathfinding within complex flood environments.</div></div>\",\"PeriodicalId\":49518,\"journal\":{\"name\":\"Simulation Modelling Practice and Theory\",\"volume\":\"144 \",\"pages\":\"Article 103167\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation Modelling Practice and Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569190X25001029\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X25001029","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在洪水紧急救援场景中,有效的路径规划对于确保及时疏散和最大限度地降低安全风险至关重要。传统的路径规划算法通常优先考虑最短或最具成本效益的路线,潜在地忽略了安全考虑。为了解决这一限制,本研究引入了一种改进的路径规划方法,该方法使用基于行为的a -star (a *)算法,该算法专为疏散场景设计。应用元胞自动机(CA)环境来解决与传统A*算法相关的常见挑战,包括路径效率低下、距离较长以及处理动态洪水环境的困难。本研究的关键创新点是通过集成深度敏感感知(DSP)优化启发式函数,该函数在路径选择过程中基于实时水深评估来优先考虑更安全的路径,直接影响疏散行为。不同洪水场景下的实验结果表明,优化后的A*算法显著优于传统的A-star和Dijkstra算法,探测节点减少了90.06%和93.13%,降低了安全风险,计算时间缩短了87.65%和88.06%。这些发现验证了深度敏感启发式算法在复杂洪水环境中增强疏散寻路的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulating optimal flood evacuation using heuristic algorithms and path-choice behaviors
Effective path planning in flooding emergency rescue scenarios is essential for ensuring timely evacuation while minimizing safety risks. Conventional path-planning algorithms often prioritize the shortest or most cost-efficient routes, potentially neglecting safety considerations. To address this limitation, this study introduces an improved path-planning method using a behavior-based A-star (A*) algorithm designed for evacuation scenarios. A cellular automata (CA) environment is applied to address common challenges associated with traditional A* algorithms, including path inefficiencies, longer distances, and difficulties in handling dynamic flood environments. The key innovation of this study is the optimization of a heuristic function by integrating depth sensitivity perception (DSP), which directly influences evacuation behavior by prioritizing safer paths based on real-time water depth assessments during path selection. Experimental results across diverse flood scenarios demonstrate that the optimized A* algorithm significantly outperforms traditional A-star and Dijkstra’s algorithms, achieving reductions in explored nodes by 90.06 % and 93.13 %, lowering safety risks, and shortening computational times by 87.65 % and 88.06 %, respectively. These findings validate the efficacy of the depth-sensitive heuristic in enhancing evacuation pathfinding within complex flood environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Simulation Modelling Practice and Theory
Simulation Modelling Practice and Theory 工程技术-计算机:跨学科应用
CiteScore
9.80
自引率
4.80%
发文量
142
审稿时长
21 days
期刊介绍: The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling. The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas. Paper submission is solicited on: • theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.; • methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.; • simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.; • distributed and real-time simulation, simulation interoperability; • tools for high performance computing simulation, including dedicated architectures and parallel computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信