五种模型下完全Josephus立方体链路容错的边等周方法:一种统一的方法

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Yayu Yang, Zhaoman Huang, Mingzu Zhang, Jixiang Meng
{"title":"五种模型下完全Josephus立方体链路容错的边等周方法:一种统一的方法","authors":"Yayu Yang,&nbsp;Zhaoman Huang,&nbsp;Mingzu Zhang,&nbsp;Jixiang Meng","doi":"10.1016/j.dam.2025.06.043","DOIUrl":null,"url":null,"abstract":"<div><div>The significance of large parallel processing systems in semiconductor technology underscores the need to delve into both qualitative and quantitative parameters for assessing fault tolerance and reliability. Conditional edge-connectivity dynamically evaluates the traits of isolated components in the face of diverse link faulty models, offering a more accurate assessment of the fault tolerance and reliability of extensive parallel processing systems. Admitting network sizes in powers of two, the complete Josephus cube <span><math><mrow><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> is a link-augmented Josephus cube. This configuration is well-suited for implementation in expansive hierarchical interconnection networks. By integrating elements from fractal geometry and iterative processes, we introduce a unified method that leverages the edge isoperimetric problem in combinatorics to scrutinize the <span><math><mi>P</mi></math></span>-conditional edge-connectivity of <span><math><mrow><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>. This examination encompasses the investigation of <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>c</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>-extra edge-connectivity, modified <span><math><mi>c</mi></math></span>-embedded edge-connectivity, <span><math><mi>c</mi></math></span>-super edge-connectivity and <span><math><mi>c</mi></math></span>-average degree edge-connectivity. For <span><math><mrow><mn>3</mn><mo>≤</mo><mi>c</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, these measures exhibit uniform values, specifically <span><math><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>c</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>c</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, signifying the minimum cardinalities of faulty links that lead to a <span><math><mrow><mo>(</mo><mi>c</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional complete Josephus cube from <span><math><mrow><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>. Furthermore, we establish the exact value of the cyclic edge-connectivity of <span><math><mrow><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 27-36"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge isoperimetric method for link fault tolerance of the complete Josephus cube under five models: A unified approach\",\"authors\":\"Yayu Yang,&nbsp;Zhaoman Huang,&nbsp;Mingzu Zhang,&nbsp;Jixiang Meng\",\"doi\":\"10.1016/j.dam.2025.06.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The significance of large parallel processing systems in semiconductor technology underscores the need to delve into both qualitative and quantitative parameters for assessing fault tolerance and reliability. Conditional edge-connectivity dynamically evaluates the traits of isolated components in the face of diverse link faulty models, offering a more accurate assessment of the fault tolerance and reliability of extensive parallel processing systems. Admitting network sizes in powers of two, the complete Josephus cube <span><math><mrow><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> is a link-augmented Josephus cube. This configuration is well-suited for implementation in expansive hierarchical interconnection networks. By integrating elements from fractal geometry and iterative processes, we introduce a unified method that leverages the edge isoperimetric problem in combinatorics to scrutinize the <span><math><mi>P</mi></math></span>-conditional edge-connectivity of <span><math><mrow><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>. This examination encompasses the investigation of <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>c</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>-extra edge-connectivity, modified <span><math><mi>c</mi></math></span>-embedded edge-connectivity, <span><math><mi>c</mi></math></span>-super edge-connectivity and <span><math><mi>c</mi></math></span>-average degree edge-connectivity. For <span><math><mrow><mn>3</mn><mo>≤</mo><mi>c</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, these measures exhibit uniform values, specifically <span><math><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>c</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>c</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, signifying the minimum cardinalities of faulty links that lead to a <span><math><mrow><mo>(</mo><mi>c</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional complete Josephus cube from <span><math><mrow><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>. Furthermore, we establish the exact value of the cyclic edge-connectivity of <span><math><mrow><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"378 \",\"pages\":\"Pages 27-36\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X2500352X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2500352X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

大型并行处理系统在半导体技术中的重要性强调了对评估容错性和可靠性的定性和定量参数进行深入研究的必要性。条件边连通性动态地评估孤立组件在不同链路故障模型下的特性,为广泛并行处理系统的容错性和可靠性提供了更准确的评估。完整的Josephus立方体CJCn是一个链路增强的Josephus立方体,允许网络大小为2的幂。这种配置非常适合在扩展的分层互连网络中实现。通过整合分形几何元素和迭代过程,我们引入了一种统一的方法,利用组合学中的边等周问题来审视CJCn的p条件边连通性。本研究包括2c - 1-extra边连通性、修改的c-embedded边连通性、c-超级边连通性和c-平均度边连通性的研究。对于3≤c≤n−1和n≥4,这些度量值呈现一致的值,特别是(n−c+2)2c−1,表示导致CJCn的(c−1)维完全Josephus立方体的错误链路的最小基数。进一步,我们建立了n≥3时CJCn循环边连通性的精确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge isoperimetric method for link fault tolerance of the complete Josephus cube under five models: A unified approach
The significance of large parallel processing systems in semiconductor technology underscores the need to delve into both qualitative and quantitative parameters for assessing fault tolerance and reliability. Conditional edge-connectivity dynamically evaluates the traits of isolated components in the face of diverse link faulty models, offering a more accurate assessment of the fault tolerance and reliability of extensive parallel processing systems. Admitting network sizes in powers of two, the complete Josephus cube CJCn is a link-augmented Josephus cube. This configuration is well-suited for implementation in expansive hierarchical interconnection networks. By integrating elements from fractal geometry and iterative processes, we introduce a unified method that leverages the edge isoperimetric problem in combinatorics to scrutinize the P-conditional edge-connectivity of CJCn. This examination encompasses the investigation of 2c1-extra edge-connectivity, modified c-embedded edge-connectivity, c-super edge-connectivity and c-average degree edge-connectivity. For 3cn1 and n4, these measures exhibit uniform values, specifically (nc+2)2c1, signifying the minimum cardinalities of faulty links that lead to a (c1)-dimensional complete Josephus cube from CJCn. Furthermore, we establish the exact value of the cyclic edge-connectivity of CJCn for n3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信