完全图的直线图中的面

IF 1 3区 数学 Q1 MATHEMATICS
Martin Balko , Anna Brötzner , Fabian Klute , Josef Tkadlec
{"title":"完全图的直线图中的面","authors":"Martin Balko ,&nbsp;Anna Brötzner ,&nbsp;Fabian Klute ,&nbsp;Josef Tkadlec","doi":"10.1016/j.ejc.2025.104217","DOIUrl":null,"url":null,"abstract":"<div><div>We initiate the study of extremal problems about faces in <em>convex rectilinear drawings</em> of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, that is, drawings where vertices are represented by points in the plane in convex position and edges by line segments between the points representing the end-vertices. We show that if a convex rectilinear drawing of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> does not contain a common interior point of at least three edges, then there is always a face forming a convex 5-gon while there are such drawings without any face forming a convex <span><math><mi>k</mi></math></span>-gon with <span><math><mrow><mi>k</mi><mo>≥</mo><mn>6</mn></mrow></math></span>.</div><div>A convex rectilinear drawing of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is <em>regular</em> if its vertices correspond to vertices of a regular convex <span><math><mi>n</mi></math></span>-gon. We characterize positive integers <span><math><mi>n</mi></math></span> for which regular drawings of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> contain a face forming a convex 5-gon.</div><div>To our knowledge, this type of problems has not been considered in the literature before and so we also pose several new natural open problems.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104217"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Faces in rectilinear drawings of complete graphs\",\"authors\":\"Martin Balko ,&nbsp;Anna Brötzner ,&nbsp;Fabian Klute ,&nbsp;Josef Tkadlec\",\"doi\":\"10.1016/j.ejc.2025.104217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We initiate the study of extremal problems about faces in <em>convex rectilinear drawings</em> of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, that is, drawings where vertices are represented by points in the plane in convex position and edges by line segments between the points representing the end-vertices. We show that if a convex rectilinear drawing of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> does not contain a common interior point of at least three edges, then there is always a face forming a convex 5-gon while there are such drawings without any face forming a convex <span><math><mi>k</mi></math></span>-gon with <span><math><mrow><mi>k</mi><mo>≥</mo><mn>6</mn></mrow></math></span>.</div><div>A convex rectilinear drawing of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is <em>regular</em> if its vertices correspond to vertices of a regular convex <span><math><mi>n</mi></math></span>-gon. We characterize positive integers <span><math><mi>n</mi></math></span> for which regular drawings of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> contain a face forming a convex 5-gon.</div><div>To our knowledge, this type of problems has not been considered in the literature before and so we also pose several new natural open problems.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"130 \",\"pages\":\"Article 104217\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825001064\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001064","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们开始研究Kn的凸直线图中关于面的极值问题,即顶点由平面上凸位置的点表示,边缘由代表端点的点之间的线段表示的图。我们证明,如果Kn的凸直线图不包含至少三条边的公共内点,则总有一个面形成凸5-gon,而存在这样的图,没有任何面形成k≥6的凸k-gon。如果一个Kn的凸直线图的顶点对应于一个正则凸n-gon的顶点,那么它就是正则的。我们描述正整数n,其中Kn的正则图包含一个形成凸5-gon的面。据我们所知,这类问题在以前的文献中没有被考虑过,所以我们也提出了几个新的自然开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Faces in rectilinear drawings of complete graphs
We initiate the study of extremal problems about faces in convex rectilinear drawings of Kn, that is, drawings where vertices are represented by points in the plane in convex position and edges by line segments between the points representing the end-vertices. We show that if a convex rectilinear drawing of Kn does not contain a common interior point of at least three edges, then there is always a face forming a convex 5-gon while there are such drawings without any face forming a convex k-gon with k6.
A convex rectilinear drawing of Kn is regular if its vertices correspond to vertices of a regular convex n-gon. We characterize positive integers n for which regular drawings of Kn contain a face forming a convex 5-gon.
To our knowledge, this type of problems has not been considered in the literature before and so we also pose several new natural open problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信