{"title":"关于L2(0,1)中为加权下半坐标系但非Schauder基的精确系统{tα⋅e2πint}n∈Z∈A及其推广","authors":"Elias Zikkos","doi":"10.1016/j.acha.2025.101794","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mi>t</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>Z</mi></mrow></msub></math></span> be an exponential Schauder basis for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∈</mo><mi>R</mi></math></span>, and let <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>Z</mi></mrow></msub></math></span> be its dual Schauder basis. Let <em>A</em> be a non-empty subset of the integers containing exactly <em>M</em> elements. We prove that for <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span> the weighted system <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>⋅</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>∖</mo><mi>A</mi></mrow></msub></math></span> is exact in the space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, that is, it is complete and minimal in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, if and only if <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mi>M</mi><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>M</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></math></span>. We also show that such a system is not a Riesz basis for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>.</div><div>In particular, the weighted trigonometric system <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>⋅</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>n</mi><mi>t</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>∖</mo><mi>A</mi></mrow></msub></math></span> is exact in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, if and only if <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mi>M</mi><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>M</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></math></span>, but this system is not even a Schauder basis for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. This result extends the ones obtained by Heil and Yoon (2012) who considered a similar problem when <em>α</em> is a positive integer.</div><div>The non basicity of <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>⋅</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>n</mi><mi>t</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>∖</mo><mi>A</mi></mrow></msub></math></span> in combination with results of Heil et al. (2023), yields that for any <span><math><mi>α</mi><mo>≥</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>, the overcomplete system <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>⋅</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>n</mi><mi>t</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>Z</mi></mrow></msub></math></span> does not have a reproducing partner for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. Nevertheless this overcomplete system is a weighted lower semi frame for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. This follows from recent results of ours, where we proved that any exact system in a Hilbert space <span><math><mi>H</mi></math></span> is a weighted lower semi frame for <span><math><mi>H</mi></math></span>. For the sake of completeness, we reprove here that result.</div><div>We point out that the invertibility of Vandermonde matrices plays a crucial role for the above systems to be exact as well as for their non-basicity.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"79 ","pages":"Article 101794"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On exact systems {tα⋅e2πint}n∈Z∖A in L2(0,1) which are weighted lower semi frames but not Schauder bases, and their generalizations\",\"authors\":\"Elias Zikkos\",\"doi\":\"10.1016/j.acha.2025.101794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mi>t</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>Z</mi></mrow></msub></math></span> be an exponential Schauder basis for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∈</mo><mi>R</mi></math></span>, and let <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>Z</mi></mrow></msub></math></span> be its dual Schauder basis. Let <em>A</em> be a non-empty subset of the integers containing exactly <em>M</em> elements. We prove that for <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span> the weighted system <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>⋅</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>∖</mo><mi>A</mi></mrow></msub></math></span> is exact in the space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, that is, it is complete and minimal in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, if and only if <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mi>M</mi><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>M</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></math></span>. We also show that such a system is not a Riesz basis for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>.</div><div>In particular, the weighted trigonometric system <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>⋅</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>n</mi><mi>t</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>∖</mo><mi>A</mi></mrow></msub></math></span> is exact in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, if and only if <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mi>M</mi><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>M</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></math></span>, but this system is not even a Schauder basis for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. This result extends the ones obtained by Heil and Yoon (2012) who considered a similar problem when <em>α</em> is a positive integer.</div><div>The non basicity of <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>⋅</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>n</mi><mi>t</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>∖</mo><mi>A</mi></mrow></msub></math></span> in combination with results of Heil et al. (2023), yields that for any <span><math><mi>α</mi><mo>≥</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>, the overcomplete system <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>⋅</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>n</mi><mi>t</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>Z</mi></mrow></msub></math></span> does not have a reproducing partner for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. Nevertheless this overcomplete system is a weighted lower semi frame for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. This follows from recent results of ours, where we proved that any exact system in a Hilbert space <span><math><mi>H</mi></math></span> is a weighted lower semi frame for <span><math><mi>H</mi></math></span>. For the sake of completeness, we reprove here that result.</div><div>We point out that the invertibility of Vandermonde matrices plays a crucial role for the above systems to be exact as well as for their non-basicity.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"79 \",\"pages\":\"Article 101794\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S106352032500048X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S106352032500048X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
设{eiλnt}n∈Z是L2(0,1)的指数Schauder基,其中λn∈R,设{rn(t)}n∈Z是它的对偶Schauder基。设A是包含M个元素的整数的非空子集。证明了对于α>;0,加权系统{tα⋅rn(t)}n∈Z∈A在L2(0,1)上是精确的,即当且仅当α∈[M−12,M+12]时,它在L2(0,1)上是完备极小的。我们还证明了这样的系统不是L2(0,1)的Riesz基。特别地,当且仅当α∈[M−12,M+12]时,加权三角系统{tα⋅e2πint}n∈Z∈A在L2(0,1)中是精确的,但该系统甚至不是L2(0,1)的Schauder基。这个结果扩展了Heil和Yoon(2012)的结果,他们考虑了α为正整数时的类似问题。{tα⋅e2πint}n∈Z∈A的非碱度结合Heil et al.(2023)的结果,得到对于任意α≥1/2,过完备系统{tα⋅e2πint}n∈Z对于L2(0,1)没有可再生伙伴。然而,这个过完备系统是L2(0,1)的加权下半框架。这是根据我们最近的结果得出的,我们证明了Hilbert空间H中的任何精确系统都是H的加权下半框架。为了完备性,我们在这里重新证明了这个结果。指出Vandermonde矩阵的可逆性对上述系统的精确性和非基性起着至关重要的作用。
On exact systems {tα⋅e2πint}n∈Z∖A in L2(0,1) which are weighted lower semi frames but not Schauder bases, and their generalizations
Let be an exponential Schauder basis for , where , and let be its dual Schauder basis. Let A be a non-empty subset of the integers containing exactly M elements. We prove that for the weighted system is exact in the space , that is, it is complete and minimal in , if and only if . We also show that such a system is not a Riesz basis for .
In particular, the weighted trigonometric system is exact in , if and only if , but this system is not even a Schauder basis for . This result extends the ones obtained by Heil and Yoon (2012) who considered a similar problem when α is a positive integer.
The non basicity of in combination with results of Heil et al. (2023), yields that for any , the overcomplete system does not have a reproducing partner for . Nevertheless this overcomplete system is a weighted lower semi frame for . This follows from recent results of ours, where we proved that any exact system in a Hilbert space is a weighted lower semi frame for . For the sake of completeness, we reprove here that result.
We point out that the invertibility of Vandermonde matrices plays a crucial role for the above systems to be exact as well as for their non-basicity.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.