Rui Zhang , Ren-Jie Yang , Ping-An Zhang , Shao-Ting Wang
{"title":"在全血中预处理免疫抑制剂,不进行旋流和离心","authors":"Rui Zhang , Ren-Jie Yang , Ping-An Zhang , Shao-Ting Wang","doi":"10.1016/j.sampre.2025.100198","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Precise measurement of immunosuppressant levels in whole blood is critical for monitoring post-transplant patient outcomes. Conventional protein precipitation (PP) methods, which rely on vortex mixing and centrifugation, present substantial limitations in terms of automation and scalability. To address these challenges, we developed a novel pretreatment strategy termed “Pseudo-Protein-Precipitation combined with Cold-Induced Phase Separation” (PPP+CIPS), designed to simplify sample processing and enhance high-throughput efficiency.</div></div><div><h3>Results</h3><div>The PPP+CIPS method employs 48 % acetonitrile to generate a semi-homogeneous blood suspension, enabling in-situ drug extraction via CIPS. Notably, this approach eliminates the need for vortexing and centrifugation—key bottlenecks in traditional therapeutic drug monitoring workflows. By leveraging 96-well plates and multi-channel pipettes, the protocol reduces pretreatment time to approximately one-third of that required by PP. Clinical validation (<em>n</em> = 288 in total) revealed strong concordance with established methods, with 94 % of tacrolimus, 95 % of cyclosporin A, and 92 % of sirolimus measurements falling within ±20 % agreement limits.</div></div><div><h3>Significance</h3><div>The PPP+CIPS strategy marks a significant leap forward in high-throughput therapeutic drug monitoring for immunosuppressants. Its seamless integration with 96-well formats and static processing workflows makes it a promising cornerstone for future automated and integrated TDM systems.</div></div>","PeriodicalId":100052,"journal":{"name":"Advances in Sample Preparation","volume":"15 ","pages":"Article 100198"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pretreat immunosuppressants in whole blood without vortexing and centrifugation\",\"authors\":\"Rui Zhang , Ren-Jie Yang , Ping-An Zhang , Shao-Ting Wang\",\"doi\":\"10.1016/j.sampre.2025.100198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Precise measurement of immunosuppressant levels in whole blood is critical for monitoring post-transplant patient outcomes. Conventional protein precipitation (PP) methods, which rely on vortex mixing and centrifugation, present substantial limitations in terms of automation and scalability. To address these challenges, we developed a novel pretreatment strategy termed “Pseudo-Protein-Precipitation combined with Cold-Induced Phase Separation” (PPP+CIPS), designed to simplify sample processing and enhance high-throughput efficiency.</div></div><div><h3>Results</h3><div>The PPP+CIPS method employs 48 % acetonitrile to generate a semi-homogeneous blood suspension, enabling in-situ drug extraction via CIPS. Notably, this approach eliminates the need for vortexing and centrifugation—key bottlenecks in traditional therapeutic drug monitoring workflows. By leveraging 96-well plates and multi-channel pipettes, the protocol reduces pretreatment time to approximately one-third of that required by PP. Clinical validation (<em>n</em> = 288 in total) revealed strong concordance with established methods, with 94 % of tacrolimus, 95 % of cyclosporin A, and 92 % of sirolimus measurements falling within ±20 % agreement limits.</div></div><div><h3>Significance</h3><div>The PPP+CIPS strategy marks a significant leap forward in high-throughput therapeutic drug monitoring for immunosuppressants. Its seamless integration with 96-well formats and static processing workflows makes it a promising cornerstone for future automated and integrated TDM systems.</div></div>\",\"PeriodicalId\":100052,\"journal\":{\"name\":\"Advances in Sample Preparation\",\"volume\":\"15 \",\"pages\":\"Article 100198\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Sample Preparation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772582025000518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Sample Preparation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772582025000518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Pretreat immunosuppressants in whole blood without vortexing and centrifugation
Background
Precise measurement of immunosuppressant levels in whole blood is critical for monitoring post-transplant patient outcomes. Conventional protein precipitation (PP) methods, which rely on vortex mixing and centrifugation, present substantial limitations in terms of automation and scalability. To address these challenges, we developed a novel pretreatment strategy termed “Pseudo-Protein-Precipitation combined with Cold-Induced Phase Separation” (PPP+CIPS), designed to simplify sample processing and enhance high-throughput efficiency.
Results
The PPP+CIPS method employs 48 % acetonitrile to generate a semi-homogeneous blood suspension, enabling in-situ drug extraction via CIPS. Notably, this approach eliminates the need for vortexing and centrifugation—key bottlenecks in traditional therapeutic drug monitoring workflows. By leveraging 96-well plates and multi-channel pipettes, the protocol reduces pretreatment time to approximately one-third of that required by PP. Clinical validation (n = 288 in total) revealed strong concordance with established methods, with 94 % of tacrolimus, 95 % of cyclosporin A, and 92 % of sirolimus measurements falling within ±20 % agreement limits.
Significance
The PPP+CIPS strategy marks a significant leap forward in high-throughput therapeutic drug monitoring for immunosuppressants. Its seamless integration with 96-well formats and static processing workflows makes it a promising cornerstone for future automated and integrated TDM systems.