{"title":"非调和多元傅立叶变换与矩阵:条件数与超平面几何","authors":"Weilin Li","doi":"10.1016/j.acha.2025.101791","DOIUrl":null,"url":null,"abstract":"<div><div>Consider an operator that takes the Fourier transform of a discrete measure supported in <span><math><mi>X</mi><mo>⊆</mo><msup><mrow><mo>[</mo><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span> and restricts it to a compact <span><math><mi>Ω</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. We provide lower bounds for its smallest singular value when Ω is either a closed ball of radius <em>m</em> or closed cube of side length 2<em>m</em>, and under different types of geometric assumptions on <span><math><mi>X</mi></math></span>. We first show that if distances between points in <span><math><mi>X</mi></math></span> are lower bounded by a <em>δ</em> that is allowed to be arbitrarily small, then the smallest singular value is at least <span><math><mi>C</mi><msup><mrow><mi>m</mi></mrow><mrow><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mi>m</mi><mi>δ</mi><mo>)</mo></mrow><mrow><mi>λ</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, where <em>λ</em> is the maximum number of elements in <span><math><mi>X</mi></math></span> contained within any ball or cube of an explicitly given radius. This estimate communicates a localization effect of the Fourier transform. While it is sharp, the smallest singular value behaves better than expected for many <span><math><mi>X</mi></math></span>, including when we dilate a generic set by parameter <em>δ</em>. We next show that if there is a <em>η</em> such that, for each <span><math><mi>x</mi><mo>∈</mo><mi>X</mi></math></span>, the set <span><math><mi>X</mi><mo>∖</mo><mo>{</mo><mi>x</mi><mo>}</mo></math></span> locally consists of at most <em>r</em> hyperplanes whose distances to <em>x</em> are at least <em>η</em>, then the smallest singular value is at least <span><math><mi>C</mi><msup><mrow><mi>m</mi></mrow><mrow><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mi>m</mi><mi>η</mi><mo>)</mo></mrow><mrow><mi>r</mi></mrow></msup></math></span>. For dilations of a generic set by <em>δ</em>, the lower bound becomes <span><math><mi>C</mi><msup><mrow><mi>m</mi></mrow><mrow><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mi>m</mi><mi>δ</mi><mo>)</mo></mrow><mrow><mo>⌈</mo><mo>(</mo><mi>λ</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>d</mi><mo>⌉</mo></mrow></msup></math></span>. The appearance of a <span><math><mn>1</mn><mo>/</mo><mi>d</mi></math></span> factor in the exponent indicates that compared to worst case scenarios, the condition number of nonharmonic Fourier transforms is better than expected for typical sets and improve with higher dimensionality.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"79 ","pages":"Article 101791"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonharmonic multivariate Fourier transforms and matrices: Condition numbers and hyperplane geometry\",\"authors\":\"Weilin Li\",\"doi\":\"10.1016/j.acha.2025.101791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Consider an operator that takes the Fourier transform of a discrete measure supported in <span><math><mi>X</mi><mo>⊆</mo><msup><mrow><mo>[</mo><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span> and restricts it to a compact <span><math><mi>Ω</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. We provide lower bounds for its smallest singular value when Ω is either a closed ball of radius <em>m</em> or closed cube of side length 2<em>m</em>, and under different types of geometric assumptions on <span><math><mi>X</mi></math></span>. We first show that if distances between points in <span><math><mi>X</mi></math></span> are lower bounded by a <em>δ</em> that is allowed to be arbitrarily small, then the smallest singular value is at least <span><math><mi>C</mi><msup><mrow><mi>m</mi></mrow><mrow><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mi>m</mi><mi>δ</mi><mo>)</mo></mrow><mrow><mi>λ</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, where <em>λ</em> is the maximum number of elements in <span><math><mi>X</mi></math></span> contained within any ball or cube of an explicitly given radius. This estimate communicates a localization effect of the Fourier transform. While it is sharp, the smallest singular value behaves better than expected for many <span><math><mi>X</mi></math></span>, including when we dilate a generic set by parameter <em>δ</em>. We next show that if there is a <em>η</em> such that, for each <span><math><mi>x</mi><mo>∈</mo><mi>X</mi></math></span>, the set <span><math><mi>X</mi><mo>∖</mo><mo>{</mo><mi>x</mi><mo>}</mo></math></span> locally consists of at most <em>r</em> hyperplanes whose distances to <em>x</em> are at least <em>η</em>, then the smallest singular value is at least <span><math><mi>C</mi><msup><mrow><mi>m</mi></mrow><mrow><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mi>m</mi><mi>η</mi><mo>)</mo></mrow><mrow><mi>r</mi></mrow></msup></math></span>. For dilations of a generic set by <em>δ</em>, the lower bound becomes <span><math><mi>C</mi><msup><mrow><mi>m</mi></mrow><mrow><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mi>m</mi><mi>δ</mi><mo>)</mo></mrow><mrow><mo>⌈</mo><mo>(</mo><mi>λ</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>d</mi><mo>⌉</mo></mrow></msup></math></span>. The appearance of a <span><math><mn>1</mn><mo>/</mo><mi>d</mi></math></span> factor in the exponent indicates that compared to worst case scenarios, the condition number of nonharmonic Fourier transforms is better than expected for typical sets and improve with higher dimensionality.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"79 \",\"pages\":\"Article 101791\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520325000454\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520325000454","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Nonharmonic multivariate Fourier transforms and matrices: Condition numbers and hyperplane geometry
Consider an operator that takes the Fourier transform of a discrete measure supported in and restricts it to a compact . We provide lower bounds for its smallest singular value when Ω is either a closed ball of radius m or closed cube of side length 2m, and under different types of geometric assumptions on . We first show that if distances between points in are lower bounded by a δ that is allowed to be arbitrarily small, then the smallest singular value is at least , where λ is the maximum number of elements in contained within any ball or cube of an explicitly given radius. This estimate communicates a localization effect of the Fourier transform. While it is sharp, the smallest singular value behaves better than expected for many , including when we dilate a generic set by parameter δ. We next show that if there is a η such that, for each , the set locally consists of at most r hyperplanes whose distances to x are at least η, then the smallest singular value is at least . For dilations of a generic set by δ, the lower bound becomes . The appearance of a factor in the exponent indicates that compared to worst case scenarios, the condition number of nonharmonic Fourier transforms is better than expected for typical sets and improve with higher dimensionality.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.