非调和多元傅立叶变换与矩阵:条件数与超平面几何

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Weilin Li
{"title":"非调和多元傅立叶变换与矩阵:条件数与超平面几何","authors":"Weilin Li","doi":"10.1016/j.acha.2025.101791","DOIUrl":null,"url":null,"abstract":"<div><div>Consider an operator that takes the Fourier transform of a discrete measure supported in <span><math><mi>X</mi><mo>⊆</mo><msup><mrow><mo>[</mo><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span> and restricts it to a compact <span><math><mi>Ω</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. We provide lower bounds for its smallest singular value when Ω is either a closed ball of radius <em>m</em> or closed cube of side length 2<em>m</em>, and under different types of geometric assumptions on <span><math><mi>X</mi></math></span>. We first show that if distances between points in <span><math><mi>X</mi></math></span> are lower bounded by a <em>δ</em> that is allowed to be arbitrarily small, then the smallest singular value is at least <span><math><mi>C</mi><msup><mrow><mi>m</mi></mrow><mrow><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mi>m</mi><mi>δ</mi><mo>)</mo></mrow><mrow><mi>λ</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, where <em>λ</em> is the maximum number of elements in <span><math><mi>X</mi></math></span> contained within any ball or cube of an explicitly given radius. This estimate communicates a localization effect of the Fourier transform. While it is sharp, the smallest singular value behaves better than expected for many <span><math><mi>X</mi></math></span>, including when we dilate a generic set by parameter <em>δ</em>. We next show that if there is a <em>η</em> such that, for each <span><math><mi>x</mi><mo>∈</mo><mi>X</mi></math></span>, the set <span><math><mi>X</mi><mo>∖</mo><mo>{</mo><mi>x</mi><mo>}</mo></math></span> locally consists of at most <em>r</em> hyperplanes whose distances to <em>x</em> are at least <em>η</em>, then the smallest singular value is at least <span><math><mi>C</mi><msup><mrow><mi>m</mi></mrow><mrow><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mi>m</mi><mi>η</mi><mo>)</mo></mrow><mrow><mi>r</mi></mrow></msup></math></span>. For dilations of a generic set by <em>δ</em>, the lower bound becomes <span><math><mi>C</mi><msup><mrow><mi>m</mi></mrow><mrow><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mi>m</mi><mi>δ</mi><mo>)</mo></mrow><mrow><mo>⌈</mo><mo>(</mo><mi>λ</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>d</mi><mo>⌉</mo></mrow></msup></math></span>. The appearance of a <span><math><mn>1</mn><mo>/</mo><mi>d</mi></math></span> factor in the exponent indicates that compared to worst case scenarios, the condition number of nonharmonic Fourier transforms is better than expected for typical sets and improve with higher dimensionality.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"79 ","pages":"Article 101791"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonharmonic multivariate Fourier transforms and matrices: Condition numbers and hyperplane geometry\",\"authors\":\"Weilin Li\",\"doi\":\"10.1016/j.acha.2025.101791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Consider an operator that takes the Fourier transform of a discrete measure supported in <span><math><mi>X</mi><mo>⊆</mo><msup><mrow><mo>[</mo><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span> and restricts it to a compact <span><math><mi>Ω</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. We provide lower bounds for its smallest singular value when Ω is either a closed ball of radius <em>m</em> or closed cube of side length 2<em>m</em>, and under different types of geometric assumptions on <span><math><mi>X</mi></math></span>. We first show that if distances between points in <span><math><mi>X</mi></math></span> are lower bounded by a <em>δ</em> that is allowed to be arbitrarily small, then the smallest singular value is at least <span><math><mi>C</mi><msup><mrow><mi>m</mi></mrow><mrow><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mi>m</mi><mi>δ</mi><mo>)</mo></mrow><mrow><mi>λ</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, where <em>λ</em> is the maximum number of elements in <span><math><mi>X</mi></math></span> contained within any ball or cube of an explicitly given radius. This estimate communicates a localization effect of the Fourier transform. While it is sharp, the smallest singular value behaves better than expected for many <span><math><mi>X</mi></math></span>, including when we dilate a generic set by parameter <em>δ</em>. We next show that if there is a <em>η</em> such that, for each <span><math><mi>x</mi><mo>∈</mo><mi>X</mi></math></span>, the set <span><math><mi>X</mi><mo>∖</mo><mo>{</mo><mi>x</mi><mo>}</mo></math></span> locally consists of at most <em>r</em> hyperplanes whose distances to <em>x</em> are at least <em>η</em>, then the smallest singular value is at least <span><math><mi>C</mi><msup><mrow><mi>m</mi></mrow><mrow><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mi>m</mi><mi>η</mi><mo>)</mo></mrow><mrow><mi>r</mi></mrow></msup></math></span>. For dilations of a generic set by <em>δ</em>, the lower bound becomes <span><math><mi>C</mi><msup><mrow><mi>m</mi></mrow><mrow><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mi>m</mi><mi>δ</mi><mo>)</mo></mrow><mrow><mo>⌈</mo><mo>(</mo><mi>λ</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>d</mi><mo>⌉</mo></mrow></msup></math></span>. The appearance of a <span><math><mn>1</mn><mo>/</mo><mi>d</mi></math></span> factor in the exponent indicates that compared to worst case scenarios, the condition number of nonharmonic Fourier transforms is better than expected for typical sets and improve with higher dimensionality.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"79 \",\"pages\":\"Article 101791\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520325000454\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520325000454","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个算子,该算子对X × × [- 12,12)d中支持的离散测度进行傅里叶变换,并将其限制于紧致Ω × × Rd。我们为其提供下界最小奇异值时Ω要么是一个封闭的球的半径m或封闭立方体边长2米,和在不同类型的几何假设X我们第一次表明,如果X点之间的距离是有下界的δ允许任意小,那么最小奇异值至少是Cmd / 2 (mδ)λ−1,λ是元素的最大数量在X中包含任何球或多维数据集的一个显式给定的半径。这种估计传达了傅里叶变换的局部化效应。虽然它很尖锐,但对于许多X,包括当我们通过参数δ展开泛型集时,最小的奇异值表现得比预期的要好。我们接着证明,如果存在一个η,使得对于每个x∈x,集合x∈{x}局部包含最多r个到x的距离至少为η的超平面,则最小奇异值至少为Cmd/2(mη)r。对于一般集δ的扩张,下界变为Cmd/2(mδ)≤(λ−1)/d≤。指数中1/d因子的出现表明,与最坏情况相比,非调和傅里叶变换的条件数比典型集合的预期要好,并且随着维度的提高而改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonharmonic multivariate Fourier transforms and matrices: Condition numbers and hyperplane geometry
Consider an operator that takes the Fourier transform of a discrete measure supported in X[12,12)d and restricts it to a compact ΩRd. We provide lower bounds for its smallest singular value when Ω is either a closed ball of radius m or closed cube of side length 2m, and under different types of geometric assumptions on X. We first show that if distances between points in X are lower bounded by a δ that is allowed to be arbitrarily small, then the smallest singular value is at least Cmd/2(mδ)λ1, where λ is the maximum number of elements in X contained within any ball or cube of an explicitly given radius. This estimate communicates a localization effect of the Fourier transform. While it is sharp, the smallest singular value behaves better than expected for many X, including when we dilate a generic set by parameter δ. We next show that if there is a η such that, for each xX, the set X{x} locally consists of at most r hyperplanes whose distances to x are at least η, then the smallest singular value is at least Cmd/2(mη)r. For dilations of a generic set by δ, the lower bound becomes Cmd/2(mδ)(λ1)/d. The appearance of a 1/d factor in the exponent indicates that compared to worst case scenarios, the condition number of nonharmonic Fourier transforms is better than expected for typical sets and improve with higher dimensionality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信