基于价值共同创造的机器学习框架的探索和开发,用于自动化想法筛选

IF 6.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Qian Liu , Qianzhou Du , Chuang Tang , Yili Hong , Weiguo Fan
{"title":"基于价值共同创造的机器学习框架的探索和开发,用于自动化想法筛选","authors":"Qian Liu ,&nbsp;Qianzhou Du ,&nbsp;Chuang Tang ,&nbsp;Yili Hong ,&nbsp;Weiguo Fan","doi":"10.1016/j.dss.2025.114504","DOIUrl":null,"url":null,"abstract":"<div><div>Idea screening in collaborative crowdsourcing communities poses significant challenges for firms. These challenges are primarily attributable to issues of prediction accuracy and information overload. The rapid expansion of idea pools generates a vast amount of data, making it difficult to effectively identify valuable ideas for new product development. This study introduces an interpretable framework for machine learning that integrates a novel exploration and exploitation perspective within the value cocreation model to enhance idea screening. The framework incorporates six theoretical dimensions of the exploration and exploitation of value cocreation (EEVC): the exploration and exploitation of digital resources, direct interactions, and ideas and their comments. Our evaluation reveals that the EEVC-based idea-screening system significantly outperforms the traditional 3Cs model in terms of prediction accuracy. SHAP value analysis further reveals that the exploration and exploitation of digital resources are the most influential predictors of idea implementation. The EEVC framework advances open innovation theory by clarifying how value cocreation dynamics influence idea implementation. Practically, it proposes a human–machine collaboration system that enhances expert decision-making for more effective idea selection.</div></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"196 ","pages":"Article 114504"},"PeriodicalIF":6.7000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An exploration and exploitation of value cocreation-based machine learning framework for automated idea screening\",\"authors\":\"Qian Liu ,&nbsp;Qianzhou Du ,&nbsp;Chuang Tang ,&nbsp;Yili Hong ,&nbsp;Weiguo Fan\",\"doi\":\"10.1016/j.dss.2025.114504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Idea screening in collaborative crowdsourcing communities poses significant challenges for firms. These challenges are primarily attributable to issues of prediction accuracy and information overload. The rapid expansion of idea pools generates a vast amount of data, making it difficult to effectively identify valuable ideas for new product development. This study introduces an interpretable framework for machine learning that integrates a novel exploration and exploitation perspective within the value cocreation model to enhance idea screening. The framework incorporates six theoretical dimensions of the exploration and exploitation of value cocreation (EEVC): the exploration and exploitation of digital resources, direct interactions, and ideas and their comments. Our evaluation reveals that the EEVC-based idea-screening system significantly outperforms the traditional 3Cs model in terms of prediction accuracy. SHAP value analysis further reveals that the exploration and exploitation of digital resources are the most influential predictors of idea implementation. The EEVC framework advances open innovation theory by clarifying how value cocreation dynamics influence idea implementation. Practically, it proposes a human–machine collaboration system that enhances expert decision-making for more effective idea selection.</div></div>\",\"PeriodicalId\":55181,\"journal\":{\"name\":\"Decision Support Systems\",\"volume\":\"196 \",\"pages\":\"Article 114504\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Support Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167923625001058\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923625001058","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

协作众包社区的创意筛选对企业构成了重大挑战。这些挑战主要是由于预测准确性和信息过载的问题。创意池的迅速扩大产生了大量的数据,这使得有效地识别新产品开发的有价值的想法变得困难。本研究引入了一个可解释的机器学习框架,该框架在价值共同创造模型中集成了一个新的探索和开发视角,以增强想法筛选。该框架包含了价值共同创造(EEVC)探索和利用的六个理论维度:数字资源的探索和利用、直接互动、想法及其评论。我们的评估表明,基于eevc的想法筛选系统在预测精度方面显著优于传统的3c模型。SHAP值分析进一步揭示了数字资源的探索和利用是创意实施最具影响力的预测因素。EEVC框架通过阐明价值共同创造动态如何影响理念实施来推进开放式创新理论。在实践中,提出了一个人机协作系统,增强专家决策能力,实现更有效的创意选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An exploration and exploitation of value cocreation-based machine learning framework for automated idea screening
Idea screening in collaborative crowdsourcing communities poses significant challenges for firms. These challenges are primarily attributable to issues of prediction accuracy and information overload. The rapid expansion of idea pools generates a vast amount of data, making it difficult to effectively identify valuable ideas for new product development. This study introduces an interpretable framework for machine learning that integrates a novel exploration and exploitation perspective within the value cocreation model to enhance idea screening. The framework incorporates six theoretical dimensions of the exploration and exploitation of value cocreation (EEVC): the exploration and exploitation of digital resources, direct interactions, and ideas and their comments. Our evaluation reveals that the EEVC-based idea-screening system significantly outperforms the traditional 3Cs model in terms of prediction accuracy. SHAP value analysis further reveals that the exploration and exploitation of digital resources are the most influential predictors of idea implementation. The EEVC framework advances open innovation theory by clarifying how value cocreation dynamics influence idea implementation. Practically, it proposes a human–machine collaboration system that enhances expert decision-making for more effective idea selection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Decision Support Systems
Decision Support Systems 工程技术-计算机:人工智能
CiteScore
14.70
自引率
6.70%
发文量
119
审稿时长
13 months
期刊介绍: The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信