Muhammad Altaf Nazir, Sami Ullah, Asif Jamil, Ibrahim A. Shaaban, Lala Gurbanova, Karim Khan, Syed Shoaib Ahmad Shah and Shu-Juan Bao
{"title":"用于可持续能源解决方案的金属有机框架基材料的进展","authors":"Muhammad Altaf Nazir, Sami Ullah, Asif Jamil, Ibrahim A. Shaaban, Lala Gurbanova, Karim Khan, Syed Shoaib Ahmad Shah and Shu-Juan Bao","doi":"10.1039/D5TA03212A","DOIUrl":null,"url":null,"abstract":"<p >Owing to the characteristics of metal–organic frameworks (MOFs) and their variants, such as large specific surface area, high porosity, tunable structure, and ease of structural modulation, MOFs have been extensively used as electrode materials, separators, electrocatalysts, and other components of energy storage systems. Nevertheless, there are several practical issues associated with the use of MOFs that have not yet been fully resolved. The current research progress in incorporating MOFs and their derived materials into energy storage devices, including alkali-metal-ion batteries, metal sulphur batteries, aqueous zinc-ion batteries, and supercapacitors, is presented in this paper. It also provides design solutions to some major problems, such as dendrite growth and shuttle effects, which are almost always observed in secondary batteries. In addition, the design ideas for MOF-derived carbon material heterostructures and metal compound structure modification are summarized. This review provides a comprehensive compilation of the most recent studies in the domain of energy storage and conversion. Finally, the intrinsic regulation of MOF precursors and modification strategies of the materials are summarized and prospected.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 31","pages":" 25258-25303"},"PeriodicalIF":9.5000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in metal–organic framework-based materials for sustainable energy solutions\",\"authors\":\"Muhammad Altaf Nazir, Sami Ullah, Asif Jamil, Ibrahim A. Shaaban, Lala Gurbanova, Karim Khan, Syed Shoaib Ahmad Shah and Shu-Juan Bao\",\"doi\":\"10.1039/D5TA03212A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Owing to the characteristics of metal–organic frameworks (MOFs) and their variants, such as large specific surface area, high porosity, tunable structure, and ease of structural modulation, MOFs have been extensively used as electrode materials, separators, electrocatalysts, and other components of energy storage systems. Nevertheless, there are several practical issues associated with the use of MOFs that have not yet been fully resolved. The current research progress in incorporating MOFs and their derived materials into energy storage devices, including alkali-metal-ion batteries, metal sulphur batteries, aqueous zinc-ion batteries, and supercapacitors, is presented in this paper. It also provides design solutions to some major problems, such as dendrite growth and shuttle effects, which are almost always observed in secondary batteries. In addition, the design ideas for MOF-derived carbon material heterostructures and metal compound structure modification are summarized. This review provides a comprehensive compilation of the most recent studies in the domain of energy storage and conversion. Finally, the intrinsic regulation of MOF precursors and modification strategies of the materials are summarized and prospected.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 31\",\"pages\":\" 25258-25303\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta03212a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta03212a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Advances in metal–organic framework-based materials for sustainable energy solutions
Owing to the characteristics of metal–organic frameworks (MOFs) and their variants, such as large specific surface area, high porosity, tunable structure, and ease of structural modulation, MOFs have been extensively used as electrode materials, separators, electrocatalysts, and other components of energy storage systems. Nevertheless, there are several practical issues associated with the use of MOFs that have not yet been fully resolved. The current research progress in incorporating MOFs and their derived materials into energy storage devices, including alkali-metal-ion batteries, metal sulphur batteries, aqueous zinc-ion batteries, and supercapacitors, is presented in this paper. It also provides design solutions to some major problems, such as dendrite growth and shuttle effects, which are almost always observed in secondary batteries. In addition, the design ideas for MOF-derived carbon material heterostructures and metal compound structure modification are summarized. This review provides a comprehensive compilation of the most recent studies in the domain of energy storage and conversion. Finally, the intrinsic regulation of MOF precursors and modification strategies of the materials are summarized and prospected.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.