Liyao Gao, Hao Sun, Yizhe Li, Haoran Sun, Haoyang Wu, Longtao Ren, Qingzheng Xu, Jitao Chen, Man Zhao, Wen Liu
求助PDF
{"title":"选择性电催化亚硝酸盐转化为氨的铜催化剂中CO2介导的动态位点调制","authors":"Liyao Gao, Hao Sun, Yizhe Li, Haoran Sun, Haoyang Wu, Longtao Ren, Qingzheng Xu, Jitao Chen, Man Zhao, Wen Liu","doi":"10.1002/adfm.202512473","DOIUrl":null,"url":null,"abstract":"The rational modulation of catalytic sites to steer multi‐step reaction pathways remains pivotal yet challenging in electrochemical ammonia synthesis. Herein, by investigating three representative copper configurations—single atom (Cu–N<jats:sub>4</jats:sub>), cluster embedded (Cu–N<jats:sub>4</jats:sub>/Cu<jats:sub>x</jats:sub>), and nanoparticle (Cu–NPs)—how CO<jats:sub>2</jats:sub> chemisorption differentially engineers active sites to optimize nitrite‐to‐ammonia conversion is unraveled. Systematic evaluations demonstrate CO<jats:sub>2</jats:sub>’s tripartite role: 1) Stabilizing <jats:sup>*</jats:sup>NOOH intermediates through electronic modulation (Bader charge analysis), 2) Suppressing hydrogen evolution via site‐specific blocking (<jats:sup>*</jats:sup>COO⁻ on Cu–N<jats:sub>4</jats:sub>, <jats:sup>*</jats:sup>CO on Cu–NPs; in situ Raman), and 3) Reducing the NO<jats:sub>2</jats:sub> → NOOH barrier on Cu–NPs (ΔG‡ = 0.34 eV by DFT). The synergistic Cu–N<jats:sub>4</jats:sub>/Cu<jats:sub>x</jats:sub> configuration achieves 94.5% NH<jats:sub>3</jats:sub> Faraday efficiency (FE) and yield rate (3236 µg h<jats:sup>−1</jats:sup> cm<jats:sup>−2</jats:sup>) under CO<jats:sub>2</jats:sub>, substantially outperforming isolated components (Cu–N<jats:sub>4</jats:sub>: 78.1% FE/2100 µg h<jats:sup>−1</jats:sup> cm<jats:sup>−2</jats:sup>; Cu–NPs: 88.6% FE/5100 µg h<jats:sup>−1</jats:sup> cm<jats:sup>−2</jats:sup>). Operando analysis reveals mechanistic divergence: Single‐atomic Cu–N<jats:sub>4</jats:sub> sites preferentially adsorb <jats:sup>*</jats:sup>COO⁻ to impede hydrogen evolution reaction (HER), while Cu–NPs leverage <jats:sup>*</jats:sup>CO intermediates to accelerate <jats:sup>*</jats:sup>NO<jats:sub>2</jats:sub> hydrogenation. This atomic‐level understanding of chemisorption‐driven site regulation establishes a generalizable design principle for decoupling activity and selectivity constraints, advancing sustainable nitrogen electrochemistry.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"109 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CO2‐Mediated Dynamic Site Modulation in Copper Catalysts for Selective Electrocatalytic Nitrite‐to‐Ammonia Conversion\",\"authors\":\"Liyao Gao, Hao Sun, Yizhe Li, Haoran Sun, Haoyang Wu, Longtao Ren, Qingzheng Xu, Jitao Chen, Man Zhao, Wen Liu\",\"doi\":\"10.1002/adfm.202512473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rational modulation of catalytic sites to steer multi‐step reaction pathways remains pivotal yet challenging in electrochemical ammonia synthesis. Herein, by investigating three representative copper configurations—single atom (Cu–N<jats:sub>4</jats:sub>), cluster embedded (Cu–N<jats:sub>4</jats:sub>/Cu<jats:sub>x</jats:sub>), and nanoparticle (Cu–NPs)—how CO<jats:sub>2</jats:sub> chemisorption differentially engineers active sites to optimize nitrite‐to‐ammonia conversion is unraveled. Systematic evaluations demonstrate CO<jats:sub>2</jats:sub>’s tripartite role: 1) Stabilizing <jats:sup>*</jats:sup>NOOH intermediates through electronic modulation (Bader charge analysis), 2) Suppressing hydrogen evolution via site‐specific blocking (<jats:sup>*</jats:sup>COO⁻ on Cu–N<jats:sub>4</jats:sub>, <jats:sup>*</jats:sup>CO on Cu–NPs; in situ Raman), and 3) Reducing the NO<jats:sub>2</jats:sub> → NOOH barrier on Cu–NPs (ΔG‡ = 0.34 eV by DFT). The synergistic Cu–N<jats:sub>4</jats:sub>/Cu<jats:sub>x</jats:sub> configuration achieves 94.5% NH<jats:sub>3</jats:sub> Faraday efficiency (FE) and yield rate (3236 µg h<jats:sup>−1</jats:sup> cm<jats:sup>−2</jats:sup>) under CO<jats:sub>2</jats:sub>, substantially outperforming isolated components (Cu–N<jats:sub>4</jats:sub>: 78.1% FE/2100 µg h<jats:sup>−1</jats:sup> cm<jats:sup>−2</jats:sup>; Cu–NPs: 88.6% FE/5100 µg h<jats:sup>−1</jats:sup> cm<jats:sup>−2</jats:sup>). Operando analysis reveals mechanistic divergence: Single‐atomic Cu–N<jats:sub>4</jats:sub> sites preferentially adsorb <jats:sup>*</jats:sup>COO⁻ to impede hydrogen evolution reaction (HER), while Cu–NPs leverage <jats:sup>*</jats:sup>CO intermediates to accelerate <jats:sup>*</jats:sup>NO<jats:sub>2</jats:sub> hydrogenation. This atomic‐level understanding of chemisorption‐driven site regulation establishes a generalizable design principle for decoupling activity and selectivity constraints, advancing sustainable nitrogen electrochemistry.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202512473\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202512473","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
引用
批量引用