Gaorav Gupta, Qinhong Wang, Simon Ellington, Paolo Guerra, Faeze Gharibpoor, Dennis Simpson, Min-Guk Cho, Adriana Beltran
{"title":"FANCA缺陷通过PARP1抑制剂诱导致癌r -环依赖的合成致死率。","authors":"Gaorav Gupta, Qinhong Wang, Simon Ellington, Paolo Guerra, Faeze Gharibpoor, Dennis Simpson, Min-Guk Cho, Adriana Beltran","doi":"10.21203/rs.3.rs-6080272/v1","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic lethality (SL) underlies the success of PARP1 inhibitors (PARPi) in treating homologous recombination (HR) deficient cancers, but extending this paradigm to other DNA damage response (DDR) deficiencies has proven challenging. We performed an in vivo CRISPR screen to identify DDR gene mutations that both enhance tumorigenesis and confer sensitivity to PARPi. Our screen identified FANCA deficiency as a driver of PARPi SL that was validated across diverse human cancer models. FANCA deficiency does not impair HR but disrupts Okazaki fragment maturation (OFM), causing lagging strand gaps and RPA exhaustion upon PARPi treatment. These effects require FANCA interaction with FEN1, independently of its canonical role in interstrand crosslink repair. We find FANCA-mediated FEN1 recruitment is required for OFM at oncogene-associated R loops during PARPi treatment. These findings establish a novel and non-canonical function for FANCA in FEN1-mediated OFM that can be leveraged for PARPi synthetic lethality in FANCA-mutant cancers.</p>","PeriodicalId":519972,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236914/pdf/","citationCount":"0","resultStr":"{\"title\":\"FANCA Deficiency Induces Oncogenic R-Loop Dependent Synthetic Lethality with PARP1 Inhibitors.\",\"authors\":\"Gaorav Gupta, Qinhong Wang, Simon Ellington, Paolo Guerra, Faeze Gharibpoor, Dennis Simpson, Min-Guk Cho, Adriana Beltran\",\"doi\":\"10.21203/rs.3.rs-6080272/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Synthetic lethality (SL) underlies the success of PARP1 inhibitors (PARPi) in treating homologous recombination (HR) deficient cancers, but extending this paradigm to other DNA damage response (DDR) deficiencies has proven challenging. We performed an in vivo CRISPR screen to identify DDR gene mutations that both enhance tumorigenesis and confer sensitivity to PARPi. Our screen identified FANCA deficiency as a driver of PARPi SL that was validated across diverse human cancer models. FANCA deficiency does not impair HR but disrupts Okazaki fragment maturation (OFM), causing lagging strand gaps and RPA exhaustion upon PARPi treatment. These effects require FANCA interaction with FEN1, independently of its canonical role in interstrand crosslink repair. We find FANCA-mediated FEN1 recruitment is required for OFM at oncogene-associated R loops during PARPi treatment. These findings establish a novel and non-canonical function for FANCA in FEN1-mediated OFM that can be leveraged for PARPi synthetic lethality in FANCA-mutant cancers.</p>\",\"PeriodicalId\":519972,\"journal\":{\"name\":\"Research square\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236914/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research square\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-6080272/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-6080272/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthetic lethality (SL) underlies the success of PARP1 inhibitors (PARPi) in treating homologous recombination (HR) deficient cancers, but extending this paradigm to other DNA damage response (DDR) deficiencies has proven challenging. We performed an in vivo CRISPR screen to identify DDR gene mutations that both enhance tumorigenesis and confer sensitivity to PARPi. Our screen identified FANCA deficiency as a driver of PARPi SL that was validated across diverse human cancer models. FANCA deficiency does not impair HR but disrupts Okazaki fragment maturation (OFM), causing lagging strand gaps and RPA exhaustion upon PARPi treatment. These effects require FANCA interaction with FEN1, independently of its canonical role in interstrand crosslink repair. We find FANCA-mediated FEN1 recruitment is required for OFM at oncogene-associated R loops during PARPi treatment. These findings establish a novel and non-canonical function for FANCA in FEN1-mediated OFM that can be leveraged for PARPi synthetic lethality in FANCA-mutant cancers.