FeatureForest:基础模型的力量,随机森林的可用性。

Mehdi Seifi, Damian Dalle Nogare, Juan Manuel Battagliotti, Vera Galinova, Ananya Kedige Rao, Pierre-Henri Jouneau, Anwai Archit, Constantin Pape, Johan Decelle, Florian Jug, Joran Deschamps
{"title":"FeatureForest:基础模型的力量,随机森林的可用性。","authors":"Mehdi Seifi, Damian Dalle Nogare, Juan Manuel Battagliotti, Vera Galinova, Ananya Kedige Rao, Pierre-Henri Jouneau, Anwai Archit, Constantin Pape, Johan Decelle, Florian Jug, Joran Deschamps","doi":"10.1038/s44303-025-00089-9","DOIUrl":null,"url":null,"abstract":"<p><p>Analysis of biological images relies heavily on segmenting the biological objects of interest in the image before performing quantitative analysis. Deep learning (DL) is ubiquitous in such segmentation tasks, but can be cumbersome to apply, as it often requires a large amount of manual labeling to produce ground-truth data, and expert knowledge to train the models. More recently, large foundation models, such as SAM, have shown promising results on scientific images. They, however, require manual prompting for each object or tedious post-processing to selectively segment these objects. Here, we present FeatureForest, a method that leverages the feature embeddings of large foundation models to train a random forest classifier, thereby providing users with a rapid way of semantically segmenting complex images using only a few labeling strokes. We demonstrate the improvement in performance over a variety of datasets and provide an open-source implementation in napari that can be extended to new models.</p>","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":"3 1","pages":"32"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238231/pdf/","citationCount":"0","resultStr":"{\"title\":\"FeatureForest: the power of foundation models, the usability of random forests.\",\"authors\":\"Mehdi Seifi, Damian Dalle Nogare, Juan Manuel Battagliotti, Vera Galinova, Ananya Kedige Rao, Pierre-Henri Jouneau, Anwai Archit, Constantin Pape, Johan Decelle, Florian Jug, Joran Deschamps\",\"doi\":\"10.1038/s44303-025-00089-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Analysis of biological images relies heavily on segmenting the biological objects of interest in the image before performing quantitative analysis. Deep learning (DL) is ubiquitous in such segmentation tasks, but can be cumbersome to apply, as it often requires a large amount of manual labeling to produce ground-truth data, and expert knowledge to train the models. More recently, large foundation models, such as SAM, have shown promising results on scientific images. They, however, require manual prompting for each object or tedious post-processing to selectively segment these objects. Here, we present FeatureForest, a method that leverages the feature embeddings of large foundation models to train a random forest classifier, thereby providing users with a rapid way of semantically segmenting complex images using only a few labeling strokes. We demonstrate the improvement in performance over a variety of datasets and provide an open-source implementation in napari that can be extended to new models.</p>\",\"PeriodicalId\":501709,\"journal\":{\"name\":\"npj Imaging\",\"volume\":\"3 1\",\"pages\":\"32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238231/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44303-025-00089-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44303-025-00089-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物图像的分析很大程度上依赖于在进行定量分析之前对图像中感兴趣的生物对象进行分割。深度学习(DL)在此类分割任务中无处不在,但应用起来可能很麻烦,因为它通常需要大量的手动标记来生成真实数据,并需要专家知识来训练模型。最近,大型基础模型,如SAM,在科学图像上显示出有希望的结果。然而,它们需要手动提示每个对象或繁琐的后处理来选择性地分割这些对象。在这里,我们提出了feature forest,一种利用大型基础模型的特征嵌入来训练随机森林分类器的方法,从而为用户提供了一种仅使用少量标记笔画就能快速对复杂图像进行语义分割的方法。我们展示了在各种数据集上的性能改进,并在napari中提供了一个可以扩展到新模型的开源实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FeatureForest: the power of foundation models, the usability of random forests.

Analysis of biological images relies heavily on segmenting the biological objects of interest in the image before performing quantitative analysis. Deep learning (DL) is ubiquitous in such segmentation tasks, but can be cumbersome to apply, as it often requires a large amount of manual labeling to produce ground-truth data, and expert knowledge to train the models. More recently, large foundation models, such as SAM, have shown promising results on scientific images. They, however, require manual prompting for each object or tedious post-processing to selectively segment these objects. Here, we present FeatureForest, a method that leverages the feature embeddings of large foundation models to train a random forest classifier, thereby providing users with a rapid way of semantically segmenting complex images using only a few labeling strokes. We demonstrate the improvement in performance over a variety of datasets and provide an open-source implementation in napari that can be extended to new models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信