一个基于多模态转换器的工具,用于跨语言自动生成具体等级。

Viktor Kewenig, Jeremy I Skipper, Gabriella Vigliocco
{"title":"一个基于多模态转换器的工具,用于跨语言自动生成具体等级。","authors":"Viktor Kewenig, Jeremy I Skipper, Gabriella Vigliocco","doi":"10.1038/s44271-025-00280-z","DOIUrl":null,"url":null,"abstract":"<p><p>We present an automated method for generating concreteness ratings that achieves beyond human-level reliability across multiple languages and expression types. Our approach combines multimodal transformers with emotion-finetuned language models and achieves correlations of 0.93 for single British words and 0.85 for multiword expressions with existing corpora of human raters. We demonstrate general applicability through successful cross-lingual generalization to an entirely unseen corpus of Estonian single- and multi-word expressions (N = 35,979), achieved via automated language detection and translation. By leveraging both visual and emotional information in context-aware language embeddings, our method effectively captures the full spectrum from concrete to abstract concepts. Our automated system offers a context sensitive, reliable alternative to traditional human ratings, eliminating the need for time-consuming and costly human rating collection. We provide an easy to access web-based interface for research to use our tool under concreteness.eu .</p>","PeriodicalId":501698,"journal":{"name":"Communications Psychology","volume":"3 1","pages":"100"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multimodal transformer-based tool for automatic generation of concreteness ratings across languages.\",\"authors\":\"Viktor Kewenig, Jeremy I Skipper, Gabriella Vigliocco\",\"doi\":\"10.1038/s44271-025-00280-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present an automated method for generating concreteness ratings that achieves beyond human-level reliability across multiple languages and expression types. Our approach combines multimodal transformers with emotion-finetuned language models and achieves correlations of 0.93 for single British words and 0.85 for multiword expressions with existing corpora of human raters. We demonstrate general applicability through successful cross-lingual generalization to an entirely unseen corpus of Estonian single- and multi-word expressions (N = 35,979), achieved via automated language detection and translation. By leveraging both visual and emotional information in context-aware language embeddings, our method effectively captures the full spectrum from concrete to abstract concepts. Our automated system offers a context sensitive, reliable alternative to traditional human ratings, eliminating the need for time-consuming and costly human rating collection. We provide an easy to access web-based interface for research to use our tool under concreteness.eu .</p>\",\"PeriodicalId\":501698,\"journal\":{\"name\":\"Communications Psychology\",\"volume\":\"3 1\",\"pages\":\"100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Psychology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44271-025-00280-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44271-025-00280-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种自动化的方法来生成具体等级,在多种语言和表达类型中实现超越人类水平的可靠性。我们的方法结合了多模态变换和情绪微调语言模型,并在现有的人类评分者语料库中实现了单个英国单词和多单词表达的0.93和0.85的相关性。我们通过成功地跨语言泛化到完全看不见的爱沙尼亚语单词和多词表达式(N = 35,979)的语料库,通过自动语言检测和翻译实现了一般适用性。通过利用上下文感知语言嵌入中的视觉和情感信息,我们的方法有效地捕获了从具体到抽象概念的全部范围。我们的自动化系统提供了一个上下文敏感的、可靠的替代传统的人工评级,消除了耗时和昂贵的人工评级收集的需要。我们提供了一个易于访问的基于web的界面,供研究人员在具体情况下使用我们的工具。欧盟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multimodal transformer-based tool for automatic generation of concreteness ratings across languages.

We present an automated method for generating concreteness ratings that achieves beyond human-level reliability across multiple languages and expression types. Our approach combines multimodal transformers with emotion-finetuned language models and achieves correlations of 0.93 for single British words and 0.85 for multiword expressions with existing corpora of human raters. We demonstrate general applicability through successful cross-lingual generalization to an entirely unseen corpus of Estonian single- and multi-word expressions (N = 35,979), achieved via automated language detection and translation. By leveraging both visual and emotional information in context-aware language embeddings, our method effectively captures the full spectrum from concrete to abstract concepts. Our automated system offers a context sensitive, reliable alternative to traditional human ratings, eliminating the need for time-consuming and costly human rating collection. We provide an easy to access web-based interface for research to use our tool under concreteness.eu .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信