利用机器学习对移植后肝癌模型的多伦多复发推断进行验证。

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Zhihao Li, Itsuko Chih-Yi Chen, Leonardo Centonze, Christian T J Magyar, Woo Jin Choi, Tommy Ivanics, Grainne M O'Kane, Arndt Vogel, Lauren Erdman, Luciano De Carlis, Jan Lerut, Quirino Lai, Vatche G Agopian, Neil Mehta, Chao-Long Chen, Gonzalo Sapisochin
{"title":"利用机器学习对移植后肝癌模型的多伦多复发推断进行验证。","authors":"Zhihao Li, Itsuko Chih-Yi Chen, Leonardo Centonze, Christian T J Magyar, Woo Jin Choi, Tommy Ivanics, Grainne M O'Kane, Arndt Vogel, Lauren Erdman, Luciano De Carlis, Jan Lerut, Quirino Lai, Vatche G Agopian, Neil Mehta, Chao-Long Chen, Gonzalo Sapisochin","doi":"10.1038/s43856-025-00994-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Organ shortages require prioritizing hepatocellular carcinoma (HCC) patients with the highest survival benefit for allografts. While traditional models like AFP, MORAL, and HALT-HCC are commonly used for recurrence risk prediction, the TRIUMPH model, which uses machine learning, has shown superior performance. This study aims to externally validate the model.</p><p><strong>Methods: </strong>The cohort included 2844 HCC patients who underwent liver transplantation at six international centers from 2000-2022. The TRIUMPH model utilized a regularized Cox proportional hazards approach with a penalty term for coefficient adjustment. Discrimination was assessed using the c-index, and clinical utility was evaluated via decision curve analysis.</p><p><strong>Results: </strong>The most common liver diseases are hepatitis C (49%) and hepatitis B (27%). At listing, 84% meets the Milan criteria, and 91% are within criteria at transplant. Median model for end-stage liver disease score is 10 (IQR:8-14), alpha-fetoprotein level 8 ng/mL (IQR:4-25), and tumor size 2 cm (IQR:1.1-3.0). Living donor grafts are used in 24% of cases. Recurrence rate is 9.1% with a median time to recurrence of 17.5 months. Recurrence-free survival rates at 1/3/5 years are 95.7%/89.5%/87.7%, respectively. The TRIUMPH model achieves the highest c-index (0.71), outperforming MORAL (0.61, p = 0.049) and AFP (0.61, p = 0.04), though not significantly better than HALT-HCC (0.67, p = 0.28). TRIUMPH shows superior clinical utility up to a threshold of 0.6.</p><p><strong>Conclusions: </strong>The TRIUMPH model demonstrates good accuracy and clinical utility in predicting post-transplant HCC recurrence. Its integration into organ allocation could improve transplantation outcomes.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"284"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238485/pdf/","citationCount":"0","resultStr":"{\"title\":\"Validation of the Toronto recurrence inference using machine-learning for post-transplant hepatocellular carcinoma model.\",\"authors\":\"Zhihao Li, Itsuko Chih-Yi Chen, Leonardo Centonze, Christian T J Magyar, Woo Jin Choi, Tommy Ivanics, Grainne M O'Kane, Arndt Vogel, Lauren Erdman, Luciano De Carlis, Jan Lerut, Quirino Lai, Vatche G Agopian, Neil Mehta, Chao-Long Chen, Gonzalo Sapisochin\",\"doi\":\"10.1038/s43856-025-00994-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Organ shortages require prioritizing hepatocellular carcinoma (HCC) patients with the highest survival benefit for allografts. While traditional models like AFP, MORAL, and HALT-HCC are commonly used for recurrence risk prediction, the TRIUMPH model, which uses machine learning, has shown superior performance. This study aims to externally validate the model.</p><p><strong>Methods: </strong>The cohort included 2844 HCC patients who underwent liver transplantation at six international centers from 2000-2022. The TRIUMPH model utilized a regularized Cox proportional hazards approach with a penalty term for coefficient adjustment. Discrimination was assessed using the c-index, and clinical utility was evaluated via decision curve analysis.</p><p><strong>Results: </strong>The most common liver diseases are hepatitis C (49%) and hepatitis B (27%). At listing, 84% meets the Milan criteria, and 91% are within criteria at transplant. Median model for end-stage liver disease score is 10 (IQR:8-14), alpha-fetoprotein level 8 ng/mL (IQR:4-25), and tumor size 2 cm (IQR:1.1-3.0). Living donor grafts are used in 24% of cases. Recurrence rate is 9.1% with a median time to recurrence of 17.5 months. Recurrence-free survival rates at 1/3/5 years are 95.7%/89.5%/87.7%, respectively. The TRIUMPH model achieves the highest c-index (0.71), outperforming MORAL (0.61, p = 0.049) and AFP (0.61, p = 0.04), though not significantly better than HALT-HCC (0.67, p = 0.28). TRIUMPH shows superior clinical utility up to a threshold of 0.6.</p><p><strong>Conclusions: </strong>The TRIUMPH model demonstrates good accuracy and clinical utility in predicting post-transplant HCC recurrence. Its integration into organ allocation could improve transplantation outcomes.</p>\",\"PeriodicalId\":72646,\"journal\":{\"name\":\"Communications medicine\",\"volume\":\"5 1\",\"pages\":\"284\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238485/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43856-025-00994-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-00994-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:器官短缺需要优先考虑生存率最高的肝细胞癌(HCC)患者进行同种异体移植。传统模型如AFP、MORAL和HALT-HCC通常用于复发风险预测,而使用机器学习的TRIUMPH模型表现出了优越的性能。本研究旨在对模型进行外部验证。方法:该队列包括2000-2022年在6个国际中心接受肝移植的2844例HCC患者。TRIUMPH模型采用了正则化Cox比例风险方法,并为系数调整添加了惩罚项。采用c指数评估辨别性,通过决策曲线分析评估临床效用。结果:最常见的肝脏疾病是丙型肝炎(49%)和乙型肝炎(27%)。上市时,84%符合米兰标准,91%符合移植标准。终末期肝病的中位模型评分为10 (IQR:8-14),甲胎蛋白水平为8 ng/mL (IQR:4-25),肿瘤大小为2 cm (IQR:1.1-3.0)。24%的病例采用活体供体移植。复发率为9.1%,中位复发时间为17.5个月。1/3/5年无复发生存率分别为95.7%/89.5%/87.7%。TRIUMPH模型的c-指数最高(0.71),优于MORAL (0.61, p = 0.049)和AFP (0.61, p = 0.04),但并不明显优于HALT-HCC (0.67, p = 0.28)。TRIUMPH显示出优异的临床效用,阈值高达0.6。结论:TRIUMPH模型在预测移植后HCC复发方面具有良好的准确性和临床实用性。将其整合到器官分配中可以改善移植结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Validation of the Toronto recurrence inference using machine-learning for post-transplant hepatocellular carcinoma model.

Background: Organ shortages require prioritizing hepatocellular carcinoma (HCC) patients with the highest survival benefit for allografts. While traditional models like AFP, MORAL, and HALT-HCC are commonly used for recurrence risk prediction, the TRIUMPH model, which uses machine learning, has shown superior performance. This study aims to externally validate the model.

Methods: The cohort included 2844 HCC patients who underwent liver transplantation at six international centers from 2000-2022. The TRIUMPH model utilized a regularized Cox proportional hazards approach with a penalty term for coefficient adjustment. Discrimination was assessed using the c-index, and clinical utility was evaluated via decision curve analysis.

Results: The most common liver diseases are hepatitis C (49%) and hepatitis B (27%). At listing, 84% meets the Milan criteria, and 91% are within criteria at transplant. Median model for end-stage liver disease score is 10 (IQR:8-14), alpha-fetoprotein level 8 ng/mL (IQR:4-25), and tumor size 2 cm (IQR:1.1-3.0). Living donor grafts are used in 24% of cases. Recurrence rate is 9.1% with a median time to recurrence of 17.5 months. Recurrence-free survival rates at 1/3/5 years are 95.7%/89.5%/87.7%, respectively. The TRIUMPH model achieves the highest c-index (0.71), outperforming MORAL (0.61, p = 0.049) and AFP (0.61, p = 0.04), though not significantly better than HALT-HCC (0.67, p = 0.28). TRIUMPH shows superior clinical utility up to a threshold of 0.6.

Conclusions: The TRIUMPH model demonstrates good accuracy and clinical utility in predicting post-transplant HCC recurrence. Its integration into organ allocation could improve transplantation outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信