Matej Pekar, Marek Kantor, Jakub Balusik, Jan Hecko, Piotr Branny
{"title":"超越BMI:论人工智能CT身体成分分析的临床价值","authors":"Matej Pekar, Marek Kantor, Jakub Balusik, Jan Hecko, Piotr Branny","doi":"10.17305/bb.2025.12774","DOIUrl":null,"url":null,"abstract":"<p><p>Body Mass Index (BMI) has long been used as a standard measure for assessing population-level health risks, but its clinical adequacy has increasingly been called into question. This opinion paper challenges the clinical adequacy of BMI and presents AI-enhanced CT body composition analysis as a superior alternative for individualized risk assessment. While BMI serves population-level screening, its inability to differentiate between tissue types leads to critical misclassifications, particularly for sarcopenic obesity. AI-powered analysis of CT imaging at the L3 vertebra level provides precise quantification of skeletal muscle index, visceral, and subcutaneous adipose tissues -metrics that consistently outperform BMI in predicting outcomes across oncology, cardiology, and critical care. Recent technological advances have transformed this approach: the \"opportunistic\" use of existing clinical CT scans eliminates radiation concerns, while AI automation has reduced analysis time from 15-20 minutes to mere seconds. These innovations effectively address previous implementation barriers and enable practical clinical application with minimal resource demands, creating opportunities for targeted interventions and personalized care pathways.</p>","PeriodicalId":72398,"journal":{"name":"Biomolecules & biomedicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond BMI: An opinion on the clinical value of AI-powered CT body composition analysis.\",\"authors\":\"Matej Pekar, Marek Kantor, Jakub Balusik, Jan Hecko, Piotr Branny\",\"doi\":\"10.17305/bb.2025.12774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Body Mass Index (BMI) has long been used as a standard measure for assessing population-level health risks, but its clinical adequacy has increasingly been called into question. This opinion paper challenges the clinical adequacy of BMI and presents AI-enhanced CT body composition analysis as a superior alternative for individualized risk assessment. While BMI serves population-level screening, its inability to differentiate between tissue types leads to critical misclassifications, particularly for sarcopenic obesity. AI-powered analysis of CT imaging at the L3 vertebra level provides precise quantification of skeletal muscle index, visceral, and subcutaneous adipose tissues -metrics that consistently outperform BMI in predicting outcomes across oncology, cardiology, and critical care. Recent technological advances have transformed this approach: the \\\"opportunistic\\\" use of existing clinical CT scans eliminates radiation concerns, while AI automation has reduced analysis time from 15-20 minutes to mere seconds. These innovations effectively address previous implementation barriers and enable practical clinical application with minimal resource demands, creating opportunities for targeted interventions and personalized care pathways.</p>\",\"PeriodicalId\":72398,\"journal\":{\"name\":\"Biomolecules & biomedicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules & biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17305/bb.2025.12774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17305/bb.2025.12774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Beyond BMI: An opinion on the clinical value of AI-powered CT body composition analysis.
Body Mass Index (BMI) has long been used as a standard measure for assessing population-level health risks, but its clinical adequacy has increasingly been called into question. This opinion paper challenges the clinical adequacy of BMI and presents AI-enhanced CT body composition analysis as a superior alternative for individualized risk assessment. While BMI serves population-level screening, its inability to differentiate between tissue types leads to critical misclassifications, particularly for sarcopenic obesity. AI-powered analysis of CT imaging at the L3 vertebra level provides precise quantification of skeletal muscle index, visceral, and subcutaneous adipose tissues -metrics that consistently outperform BMI in predicting outcomes across oncology, cardiology, and critical care. Recent technological advances have transformed this approach: the "opportunistic" use of existing clinical CT scans eliminates radiation concerns, while AI automation has reduced analysis time from 15-20 minutes to mere seconds. These innovations effectively address previous implementation barriers and enable practical clinical application with minimal resource demands, creating opportunities for targeted interventions and personalized care pathways.