Luke J Fulcher, Caleb Batley, Tomoaki Sobajima, Francis A Barr
{"title":"时间是促进有丝分裂后G1停搏的危险信号。","authors":"Luke J Fulcher, Caleb Batley, Tomoaki Sobajima, Francis A Barr","doi":"10.1016/j.tcb.2025.06.001","DOIUrl":null,"url":null,"abstract":"<p><p>Cell cycle checkpoints preventing the replication and inheritance of damaged DNA are crucial for maintaining genome stability and stopping the growth of damaged cells. Canonical checkpoints do this by preventing passage between cell cycle phases until damage has been repaired, or by promoting cell cycle exit. Herein we review checkpoint integration between cell cycle phases, specifically findings showing that extended spindle assembly checkpoint surveillance in mitosis is a danger signal triggering G1 cell cycle arrest. Evidence linking mitotic delays induced by activation of the spindle assembly checkpoint with positive and negative regulators of the G1 DNA damage checkpoint target p53 is discussed, with a focus on time-dependent changes to a p53-binding deubiquitinating complex USP28-53BP1 and the p53 ubiquitin-ligase mouse double minute homologue 2 (MDM2), respectively.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":" ","pages":""},"PeriodicalIF":18.1000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time as a danger signal promoting G1 arrest after mitosis.\",\"authors\":\"Luke J Fulcher, Caleb Batley, Tomoaki Sobajima, Francis A Barr\",\"doi\":\"10.1016/j.tcb.2025.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell cycle checkpoints preventing the replication and inheritance of damaged DNA are crucial for maintaining genome stability and stopping the growth of damaged cells. Canonical checkpoints do this by preventing passage between cell cycle phases until damage has been repaired, or by promoting cell cycle exit. Herein we review checkpoint integration between cell cycle phases, specifically findings showing that extended spindle assembly checkpoint surveillance in mitosis is a danger signal triggering G1 cell cycle arrest. Evidence linking mitotic delays induced by activation of the spindle assembly checkpoint with positive and negative regulators of the G1 DNA damage checkpoint target p53 is discussed, with a focus on time-dependent changes to a p53-binding deubiquitinating complex USP28-53BP1 and the p53 ubiquitin-ligase mouse double minute homologue 2 (MDM2), respectively.</p>\",\"PeriodicalId\":56085,\"journal\":{\"name\":\"Trends in Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":18.1000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tcb.2025.06.001\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tcb.2025.06.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Time as a danger signal promoting G1 arrest after mitosis.
Cell cycle checkpoints preventing the replication and inheritance of damaged DNA are crucial for maintaining genome stability and stopping the growth of damaged cells. Canonical checkpoints do this by preventing passage between cell cycle phases until damage has been repaired, or by promoting cell cycle exit. Herein we review checkpoint integration between cell cycle phases, specifically findings showing that extended spindle assembly checkpoint surveillance in mitosis is a danger signal triggering G1 cell cycle arrest. Evidence linking mitotic delays induced by activation of the spindle assembly checkpoint with positive and negative regulators of the G1 DNA damage checkpoint target p53 is discussed, with a focus on time-dependent changes to a p53-binding deubiquitinating complex USP28-53BP1 and the p53 ubiquitin-ligase mouse double minute homologue 2 (MDM2), respectively.
期刊介绍:
Trends in Cell Biology stands as a prominent review journal in molecular and cell biology. Monthly review articles track the current breadth and depth of research in cell biology, reporting on emerging developments and integrating various methods, disciplines, and principles. Beyond Reviews, the journal features Opinion articles that follow trends, offer innovative ideas, and provide insights into the implications of new developments, suggesting future directions. All articles are commissioned from leading scientists and undergo rigorous peer-review to ensure balance and accuracy.