基于深度学习的DCE MRI药代动力学量化预测乳腺癌早期新辅助化疗反应

IF 13.2 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chaowei Wu, Lixia Wang, Nan Wang, Stephen Shiao, Tai Dou, Yin-Chen Hsu, Anthony G Christodoulou, Yibin Xie, Debiao Li
{"title":"基于深度学习的DCE MRI药代动力学量化预测乳腺癌早期新辅助化疗反应","authors":"Chaowei Wu, Lixia Wang, Nan Wang, Stephen Shiao, Tai Dou, Yin-Chen Hsu, Anthony G Christodoulou, Yibin Xie, Debiao Li","doi":"10.1148/ryai.240769","DOIUrl":null,"url":null,"abstract":"<p><p><i>\"Just Accepted\" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To improve the generalizability of pathologic complete response (pCR) prediction following neoadjuvant chemotherapy using deep learning (DL)-based retrospective pharmacokinetic quantification (RoQ) of early-treatment dynamic contrast-enhanced (DCE) MRI. Materials and Methods This multicenter retrospective study included breast MRI data from four publicly available datasets of patients with breast cancer acquired from May 2002 to November 2016. RoQ was performed using a previously developed DL model for clinical multiphasic DCE-MRI datasets. Radiomic analysis was performed on RoQ maps and conventional enhancement maps. These data, together with clinicopathologic variables and shape-based radiomic analysis, were subsequently applied in pCR prediction using logistic regression. Prediction performance was evaluated by area under the receiver operating characteristic curve (AUC). Results A total of 1073 female patients with breast cancer were included. The proposed method showed improved consistency and generalizability compared with the reference method, achieving higher AUCs across external datasets (0.82 [CI: 0.72-0.91], 0.75 [CI: 0.71-0.79], and 0.77 [CI: 0.66-0.86] for Datasets A2, B, and C, respectively). On Dataset A2 (from the same study as the training dataset), there was no significant difference in performance between the proposed method and reference method (<i>P</i> = .80). Notably, on the combined external datasets, the proposed method significantly outperformed the reference method (AUC: 0.75 [CI: 0.72- 0.79] vs 0.71 [CI: 0.68-0.76], <i>P</i> = .003). Conclusion This work offers a novel approach to improve the generalizability and predictive accuracy of pCR response in breast cancer across diverse datasets, achieving higher and more consistent AUC scores than existing methods. ©RSNA, 2025.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240769"},"PeriodicalIF":13.2000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Early Neoadjuvant Chemotherapy Response of Breast Cancer through Deep Learning-based Pharmacokinetic Quantification of DCE MRI.\",\"authors\":\"Chaowei Wu, Lixia Wang, Nan Wang, Stephen Shiao, Tai Dou, Yin-Chen Hsu, Anthony G Christodoulou, Yibin Xie, Debiao Li\",\"doi\":\"10.1148/ryai.240769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>\\\"Just Accepted\\\" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To improve the generalizability of pathologic complete response (pCR) prediction following neoadjuvant chemotherapy using deep learning (DL)-based retrospective pharmacokinetic quantification (RoQ) of early-treatment dynamic contrast-enhanced (DCE) MRI. Materials and Methods This multicenter retrospective study included breast MRI data from four publicly available datasets of patients with breast cancer acquired from May 2002 to November 2016. RoQ was performed using a previously developed DL model for clinical multiphasic DCE-MRI datasets. Radiomic analysis was performed on RoQ maps and conventional enhancement maps. These data, together with clinicopathologic variables and shape-based radiomic analysis, were subsequently applied in pCR prediction using logistic regression. Prediction performance was evaluated by area under the receiver operating characteristic curve (AUC). Results A total of 1073 female patients with breast cancer were included. The proposed method showed improved consistency and generalizability compared with the reference method, achieving higher AUCs across external datasets (0.82 [CI: 0.72-0.91], 0.75 [CI: 0.71-0.79], and 0.77 [CI: 0.66-0.86] for Datasets A2, B, and C, respectively). On Dataset A2 (from the same study as the training dataset), there was no significant difference in performance between the proposed method and reference method (<i>P</i> = .80). Notably, on the combined external datasets, the proposed method significantly outperformed the reference method (AUC: 0.75 [CI: 0.72- 0.79] vs 0.71 [CI: 0.68-0.76], <i>P</i> = .003). Conclusion This work offers a novel approach to improve the generalizability and predictive accuracy of pCR response in breast cancer across diverse datasets, achieving higher and more consistent AUC scores than existing methods. ©RSNA, 2025.</p>\",\"PeriodicalId\":29787,\"journal\":{\"name\":\"Radiology-Artificial Intelligence\",\"volume\":\" \",\"pages\":\"e240769\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology-Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1148/ryai.240769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.240769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

“刚刚接受”的论文经过了全面的同行评审,并已被接受发表在《放射学:人工智能》杂志上。这篇文章将经过编辑,布局和校样审查,然后在其最终版本出版。请注意,在最终编辑文章的制作过程中,可能会发现可能影响内容的错误。目的利用基于深度学习(DL)的早期治疗动态对比增强(DCE) MRI回顾性药代动力学量化(RoQ)提高新辅助化疗后病理完全缓解(pCR)预测的泛化性。材料与方法本多中心回顾性研究纳入了2002年5月至2016年11月期间获得的四个公开数据集的乳腺癌患者的乳房MRI数据。RoQ使用先前开发的临床多相DCE-MRI数据集的DL模型进行。对RoQ图和常规增强图进行放射学分析。这些数据,连同临床病理变量和基于形状的放射组学分析,随后应用逻辑回归进行pCR预测。用受试者工作特征曲线下面积(AUC)评价预测效果。结果共纳入1073例女性乳腺癌患者。与参考方法相比,该方法具有更好的一致性和通用性,在外部数据集上获得更高的auc(数据集A2、B和C分别为0.82 [CI: 0.72-0.91]、0.75 [CI: 0.71-0.79]和0.77 [CI: 0.66-0.86])。在数据集A2(来自与训练数据集相同的研究)上,所提出的方法与参考方法在性能上没有显著差异(P = 0.80)。值得注意的是,在合并的外部数据集上,该方法显著优于参考方法(AUC: 0.75 [CI: 0.72- 0.79] vs 0.71 [CI: 0.68-0.76], P = 0.003)。这项工作提供了一种新的方法来提高乳腺癌pCR反应在不同数据集中的普遍性和预测准确性,获得比现有方法更高和更一致的AUC评分。©RSNA, 2025年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Early Neoadjuvant Chemotherapy Response of Breast Cancer through Deep Learning-based Pharmacokinetic Quantification of DCE MRI.

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To improve the generalizability of pathologic complete response (pCR) prediction following neoadjuvant chemotherapy using deep learning (DL)-based retrospective pharmacokinetic quantification (RoQ) of early-treatment dynamic contrast-enhanced (DCE) MRI. Materials and Methods This multicenter retrospective study included breast MRI data from four publicly available datasets of patients with breast cancer acquired from May 2002 to November 2016. RoQ was performed using a previously developed DL model for clinical multiphasic DCE-MRI datasets. Radiomic analysis was performed on RoQ maps and conventional enhancement maps. These data, together with clinicopathologic variables and shape-based radiomic analysis, were subsequently applied in pCR prediction using logistic regression. Prediction performance was evaluated by area under the receiver operating characteristic curve (AUC). Results A total of 1073 female patients with breast cancer were included. The proposed method showed improved consistency and generalizability compared with the reference method, achieving higher AUCs across external datasets (0.82 [CI: 0.72-0.91], 0.75 [CI: 0.71-0.79], and 0.77 [CI: 0.66-0.86] for Datasets A2, B, and C, respectively). On Dataset A2 (from the same study as the training dataset), there was no significant difference in performance between the proposed method and reference method (P = .80). Notably, on the combined external datasets, the proposed method significantly outperformed the reference method (AUC: 0.75 [CI: 0.72- 0.79] vs 0.71 [CI: 0.68-0.76], P = .003). Conclusion This work offers a novel approach to improve the generalizability and predictive accuracy of pCR response in breast cancer across diverse datasets, achieving higher and more consistent AUC scores than existing methods. ©RSNA, 2025.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.20
自引率
1.00%
发文量
0
期刊介绍: Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信