融合放射学纹理分析和深度学习的电影mri自动心肌梗死检测。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Wang Xu, Xiangjiang Shi
{"title":"融合放射学纹理分析和深度学习的电影mri自动心肌梗死检测。","authors":"Wang Xu, Xiangjiang Shi","doi":"10.1038/s41598-025-08127-7","DOIUrl":null,"url":null,"abstract":"<p><p>Robust differentiation between infarcted and normal myocardial tissue is essential for improving diagnostic accuracy and personalizing treatment in myocardial infarction (MI). This study proposes a hybrid framework combining radiomic texture analysis with deep learning-based segmentation to enhance MI detection on non-contrast cine cardiac magnetic resonance (CMR) imaging.The approach incorporates radiomic features derived from the Gray-Level Co-Occurrence Matrix (GLCM) and Gray-Level Run Length Matrix (GLRLM) methods into a modified U-Net segmentation network. A three-stage feature selection pipeline was employed, followed by classification using multiple machine learning models. Early and intermediate fusion strategies were integrated into the hybrid architecture. The model was validated on cine-CMR data from the SCD and Kaggle datasets.Joint Entropy, Max Probability, and RLNU emerged as the most discriminative features, with Joint Entropy achieving the highest AUC (0.948). The hybrid model outperformed standalone U-Net in segmentation (Dice = 0.887, IoU = 0.803, HD95 = 4.48 mm) and classification (accuracy = 96.30%, AUC = 0.97, precision = 0.96, recall = 0.94, F1-score = 0.96). Dimensionality reduction via PCA and t-SNE confirmed distinct class separability. Correlation coefficients (r = 0.95-0.98) and Bland-Altman plots demonstrated high agreement between predicted and reference infarct sizes.Integrating radiomic features into a deep learning segmentation pipeline improves MI detection and interpretability in cine-CMR. This scalable and explainable hybrid framework holds potential for broader applications in multimodal cardiac imaging and automated myocardial tissue characterization.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"24365"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238615/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrating radiomic texture analysis and deep learning for automated myocardial infarction detection in cine-MRI.\",\"authors\":\"Wang Xu, Xiangjiang Shi\",\"doi\":\"10.1038/s41598-025-08127-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Robust differentiation between infarcted and normal myocardial tissue is essential for improving diagnostic accuracy and personalizing treatment in myocardial infarction (MI). This study proposes a hybrid framework combining radiomic texture analysis with deep learning-based segmentation to enhance MI detection on non-contrast cine cardiac magnetic resonance (CMR) imaging.The approach incorporates radiomic features derived from the Gray-Level Co-Occurrence Matrix (GLCM) and Gray-Level Run Length Matrix (GLRLM) methods into a modified U-Net segmentation network. A three-stage feature selection pipeline was employed, followed by classification using multiple machine learning models. Early and intermediate fusion strategies were integrated into the hybrid architecture. The model was validated on cine-CMR data from the SCD and Kaggle datasets.Joint Entropy, Max Probability, and RLNU emerged as the most discriminative features, with Joint Entropy achieving the highest AUC (0.948). The hybrid model outperformed standalone U-Net in segmentation (Dice = 0.887, IoU = 0.803, HD95 = 4.48 mm) and classification (accuracy = 96.30%, AUC = 0.97, precision = 0.96, recall = 0.94, F1-score = 0.96). Dimensionality reduction via PCA and t-SNE confirmed distinct class separability. Correlation coefficients (r = 0.95-0.98) and Bland-Altman plots demonstrated high agreement between predicted and reference infarct sizes.Integrating radiomic features into a deep learning segmentation pipeline improves MI detection and interpretability in cine-CMR. This scalable and explainable hybrid framework holds potential for broader applications in multimodal cardiac imaging and automated myocardial tissue characterization.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"24365\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238615/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-08127-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-08127-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

区分梗死和正常心肌组织对于提高心肌梗死(MI)的诊断准确性和个性化治疗至关重要。本研究提出了一种结合放射学纹理分析和基于深度学习的分割的混合框架,以增强对非对比电影心脏磁共振(CMR)成像的心肌梗死检测。该方法将灰度共生矩阵(GLCM)和灰度运行长度矩阵(GLRLM)方法衍生的放射学特征融合到改进的U-Net分割网络中。采用三阶段特征选择管道,然后使用多个机器学习模型进行分类。将早期和中期融合策略集成到混合架构中。该模型在SCD和Kaggle数据集的cine-CMR数据上进行了验证。联合熵、最大概率和RLNU是最具判别性的特征,其中联合熵的AUC最高,为0.948。混合模型在分割(Dice = 0.887, IoU = 0.803, HD95 = 4.48 mm)和分类(准确率= 96.30%,AUC = 0.97,精密度= 0.96,召回率= 0.94,F1-score = 0.96)方面均优于独立U-Net模型。通过PCA和t-SNE降维证实了明显的类可分性。相关系数(r = 0.95-0.98)和Bland-Altman图显示预测梗死面积与参考梗死面积高度一致。将放射学特征集成到深度学习分割管道中可以提高电影- cmr中的MI检测和可解释性。这种可扩展和可解释的混合框架在多模态心脏成像和自动心肌组织表征方面具有更广泛的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integrating radiomic texture analysis and deep learning for automated myocardial infarction detection in cine-MRI.

Integrating radiomic texture analysis and deep learning for automated myocardial infarction detection in cine-MRI.

Integrating radiomic texture analysis and deep learning for automated myocardial infarction detection in cine-MRI.

Integrating radiomic texture analysis and deep learning for automated myocardial infarction detection in cine-MRI.

Robust differentiation between infarcted and normal myocardial tissue is essential for improving diagnostic accuracy and personalizing treatment in myocardial infarction (MI). This study proposes a hybrid framework combining radiomic texture analysis with deep learning-based segmentation to enhance MI detection on non-contrast cine cardiac magnetic resonance (CMR) imaging.The approach incorporates radiomic features derived from the Gray-Level Co-Occurrence Matrix (GLCM) and Gray-Level Run Length Matrix (GLRLM) methods into a modified U-Net segmentation network. A three-stage feature selection pipeline was employed, followed by classification using multiple machine learning models. Early and intermediate fusion strategies were integrated into the hybrid architecture. The model was validated on cine-CMR data from the SCD and Kaggle datasets.Joint Entropy, Max Probability, and RLNU emerged as the most discriminative features, with Joint Entropy achieving the highest AUC (0.948). The hybrid model outperformed standalone U-Net in segmentation (Dice = 0.887, IoU = 0.803, HD95 = 4.48 mm) and classification (accuracy = 96.30%, AUC = 0.97, precision = 0.96, recall = 0.94, F1-score = 0.96). Dimensionality reduction via PCA and t-SNE confirmed distinct class separability. Correlation coefficients (r = 0.95-0.98) and Bland-Altman plots demonstrated high agreement between predicted and reference infarct sizes.Integrating radiomic features into a deep learning segmentation pipeline improves MI detection and interpretability in cine-CMR. This scalable and explainable hybrid framework holds potential for broader applications in multimodal cardiac imaging and automated myocardial tissue characterization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信