机器学习辅助调整提高了随机对照试验中精确推理的效率。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Han Yu, Alan Hutson, Xiaoyi Ma
{"title":"机器学习辅助调整提高了随机对照试验中精确推理的效率。","authors":"Han Yu, Alan Hutson, Xiaoyi Ma","doi":"10.1038/s41598-025-10566-1","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we proposed a novel inferential procedure assisted by machine learning based adjustment for randomized control trials. The method was developed under the Rosenbaum's framework of exact tests in randomized experiments with covariate adjustments, replacing the traditional linear model with nonparametric models that capture the complex relationships between covariates and outcomes. Through extensive simulation experiments, we showed the proposed method can robustly control the type I error and can boost the statistical efficiency for a randomized controlled trial (RCT). This advantage was further demonstrated in a real-world example. The simplicity, flexibility, and robustness of the proposed method makes it a competitive candidate as a routine inference procedure for RCTs, especially when nonlinear association or interaction among covariates is expected. Its application may remarkably reduce the required sample size and cost of RCTs, such as phase III clinical trials.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"24454"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238563/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning assisted adjustment boosts efficiency of exact inference in randomized controlled trials.\",\"authors\":\"Han Yu, Alan Hutson, Xiaoyi Ma\",\"doi\":\"10.1038/s41598-025-10566-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, we proposed a novel inferential procedure assisted by machine learning based adjustment for randomized control trials. The method was developed under the Rosenbaum's framework of exact tests in randomized experiments with covariate adjustments, replacing the traditional linear model with nonparametric models that capture the complex relationships between covariates and outcomes. Through extensive simulation experiments, we showed the proposed method can robustly control the type I error and can boost the statistical efficiency for a randomized controlled trial (RCT). This advantage was further demonstrated in a real-world example. The simplicity, flexibility, and robustness of the proposed method makes it a competitive candidate as a routine inference procedure for RCTs, especially when nonlinear association or interaction among covariates is expected. Its application may remarkably reduce the required sample size and cost of RCTs, such as phase III clinical trials.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"24454\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238563/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-10566-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-10566-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种新的基于机器学习的随机对照试验调整辅助推理程序。该方法是在Rosenbaum的随机实验精确检验框架下发展起来的,采用协变量调整,用非参数模型取代了传统的线性模型,该模型捕捉了协变量与结果之间的复杂关系。通过大量的仿真实验,我们证明了该方法可以鲁棒地控制I型误差,提高随机对照试验(RCT)的统计效率。这个优势在一个实际示例中得到了进一步证明。所提出的方法的简单性、灵活性和鲁棒性使其成为随机对照试验的常规推理程序的竞争候选人,特别是当期望协变量之间的非线性关联或相互作用时。它的应用可以显著减少随机对照试验所需的样本量和成本,如III期临床试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning assisted adjustment boosts efficiency of exact inference in randomized controlled trials.

In this work, we proposed a novel inferential procedure assisted by machine learning based adjustment for randomized control trials. The method was developed under the Rosenbaum's framework of exact tests in randomized experiments with covariate adjustments, replacing the traditional linear model with nonparametric models that capture the complex relationships between covariates and outcomes. Through extensive simulation experiments, we showed the proposed method can robustly control the type I error and can boost the statistical efficiency for a randomized controlled trial (RCT). This advantage was further demonstrated in a real-world example. The simplicity, flexibility, and robustness of the proposed method makes it a competitive candidate as a routine inference procedure for RCTs, especially when nonlinear association or interaction among covariates is expected. Its application may remarkably reduce the required sample size and cost of RCTs, such as phase III clinical trials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信