{"title":"缓解推荐系统用户冷启动问题的主动学习算法。","authors":"Toon De Pessemier, Bruno Willems, Luc Martens","doi":"10.1038/s41598-025-09708-2","DOIUrl":null,"url":null,"abstract":"<p><p>A key challenge in recommender systems is how to profile new users. A popular solution for this problem is to use active learning strategies. These strategies request ratings for a small set of carefully selected items to reveal the preferences of new users. In this paper, we propose a new decision tree-based algorithm for selecting these items. Treating the recommender system as a black box, the ratings collected from interviewing new users are passed on to the recommender system with the intention of improving its performance. Extensive offline evaluation with two data sets and various recommender algorithms shows that our algorithm does indeed improve the performance of the underlying recommender algorithm if users are able to rate most of the items that are presented to them during the interview. However, online evaluation with 50 real users could not prove that our algorithm does indeed have a positive impact on the performance of the underlying recommender algorithm. This reveals the discrepancy between offline and online evaluations of active learning techniques applied in the context of recommender systems. This is due to the fact that real users are not always able to rate the item selected by the active learning algorithm and therefore cannot provide the requested information, in contrast to many machine learning scenarios where the labeling of all samples is possible. Hence, further research is required to provide more certainty regarding the impact of active learning strategies on recommender algorithms.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"24493"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238261/pdf/","citationCount":"0","resultStr":"{\"title\":\"Active learning algorithm for alleviating the user cold start problem of recommender systems.\",\"authors\":\"Toon De Pessemier, Bruno Willems, Luc Martens\",\"doi\":\"10.1038/s41598-025-09708-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A key challenge in recommender systems is how to profile new users. A popular solution for this problem is to use active learning strategies. These strategies request ratings for a small set of carefully selected items to reveal the preferences of new users. In this paper, we propose a new decision tree-based algorithm for selecting these items. Treating the recommender system as a black box, the ratings collected from interviewing new users are passed on to the recommender system with the intention of improving its performance. Extensive offline evaluation with two data sets and various recommender algorithms shows that our algorithm does indeed improve the performance of the underlying recommender algorithm if users are able to rate most of the items that are presented to them during the interview. However, online evaluation with 50 real users could not prove that our algorithm does indeed have a positive impact on the performance of the underlying recommender algorithm. This reveals the discrepancy between offline and online evaluations of active learning techniques applied in the context of recommender systems. This is due to the fact that real users are not always able to rate the item selected by the active learning algorithm and therefore cannot provide the requested information, in contrast to many machine learning scenarios where the labeling of all samples is possible. Hence, further research is required to provide more certainty regarding the impact of active learning strategies on recommender algorithms.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"24493\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238261/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-09708-2\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-09708-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Active learning algorithm for alleviating the user cold start problem of recommender systems.
A key challenge in recommender systems is how to profile new users. A popular solution for this problem is to use active learning strategies. These strategies request ratings for a small set of carefully selected items to reveal the preferences of new users. In this paper, we propose a new decision tree-based algorithm for selecting these items. Treating the recommender system as a black box, the ratings collected from interviewing new users are passed on to the recommender system with the intention of improving its performance. Extensive offline evaluation with two data sets and various recommender algorithms shows that our algorithm does indeed improve the performance of the underlying recommender algorithm if users are able to rate most of the items that are presented to them during the interview. However, online evaluation with 50 real users could not prove that our algorithm does indeed have a positive impact on the performance of the underlying recommender algorithm. This reveals the discrepancy between offline and online evaluations of active learning techniques applied in the context of recommender systems. This is due to the fact that real users are not always able to rate the item selected by the active learning algorithm and therefore cannot provide the requested information, in contrast to many machine learning scenarios where the labeling of all samples is possible. Hence, further research is required to provide more certainty regarding the impact of active learning strategies on recommender algorithms.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.