缓解推荐系统用户冷启动问题的主动学习算法。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Toon De Pessemier, Bruno Willems, Luc Martens
{"title":"缓解推荐系统用户冷启动问题的主动学习算法。","authors":"Toon De Pessemier, Bruno Willems, Luc Martens","doi":"10.1038/s41598-025-09708-2","DOIUrl":null,"url":null,"abstract":"<p><p>A key challenge in recommender systems is how to profile new users. A popular solution for this problem is to use active learning strategies. These strategies request ratings for a small set of carefully selected items to reveal the preferences of new users. In this paper, we propose a new decision tree-based algorithm for selecting these items. Treating the recommender system as a black box, the ratings collected from interviewing new users are passed on to the recommender system with the intention of improving its performance. Extensive offline evaluation with two data sets and various recommender algorithms shows that our algorithm does indeed improve the performance of the underlying recommender algorithm if users are able to rate most of the items that are presented to them during the interview. However, online evaluation with 50 real users could not prove that our algorithm does indeed have a positive impact on the performance of the underlying recommender algorithm. This reveals the discrepancy between offline and online evaluations of active learning techniques applied in the context of recommender systems. This is due to the fact that real users are not always able to rate the item selected by the active learning algorithm and therefore cannot provide the requested information, in contrast to many machine learning scenarios where the labeling of all samples is possible. Hence, further research is required to provide more certainty regarding the impact of active learning strategies on recommender algorithms.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"24493"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238261/pdf/","citationCount":"0","resultStr":"{\"title\":\"Active learning algorithm for alleviating the user cold start problem of recommender systems.\",\"authors\":\"Toon De Pessemier, Bruno Willems, Luc Martens\",\"doi\":\"10.1038/s41598-025-09708-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A key challenge in recommender systems is how to profile new users. A popular solution for this problem is to use active learning strategies. These strategies request ratings for a small set of carefully selected items to reveal the preferences of new users. In this paper, we propose a new decision tree-based algorithm for selecting these items. Treating the recommender system as a black box, the ratings collected from interviewing new users are passed on to the recommender system with the intention of improving its performance. Extensive offline evaluation with two data sets and various recommender algorithms shows that our algorithm does indeed improve the performance of the underlying recommender algorithm if users are able to rate most of the items that are presented to them during the interview. However, online evaluation with 50 real users could not prove that our algorithm does indeed have a positive impact on the performance of the underlying recommender algorithm. This reveals the discrepancy between offline and online evaluations of active learning techniques applied in the context of recommender systems. This is due to the fact that real users are not always able to rate the item selected by the active learning algorithm and therefore cannot provide the requested information, in contrast to many machine learning scenarios where the labeling of all samples is possible. Hence, further research is required to provide more certainty regarding the impact of active learning strategies on recommender algorithms.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"24493\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238261/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-09708-2\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-09708-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

推荐系统的一个关键挑战是如何描述新用户。对于这个问题,一个流行的解决方案是使用主动学习策略。这些策略要求对一小部分精心挑选的项目进行评级,以揭示新用户的偏好。在本文中,我们提出了一种新的基于决策树的算法来选择这些项目。将推荐系统视为黑盒,通过采访新用户收集的评分传递给推荐系统,目的是提高其性能。使用两个数据集和各种推荐算法进行的广泛离线评估表明,如果用户能够对面试过程中呈现给他们的大多数项目进行评级,我们的算法确实提高了底层推荐算法的性能。然而,50个真实用户的在线评价并不能证明我们的算法确实对底层推荐算法的性能有积极的影响。这揭示了在推荐系统中应用的主动学习技术的离线和在线评估之间的差异。这是由于实际用户并不总是能够对主动学习算法选择的项目进行评级,因此无法提供所请求的信息,而与许多机器学习场景相反,在这些场景中,所有样本的标签都是可能的。因此,需要进一步的研究来提供关于主动学习策略对推荐算法的影响的更多确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Active learning algorithm for alleviating the user cold start problem of recommender systems.

Active learning algorithm for alleviating the user cold start problem of recommender systems.

Active learning algorithm for alleviating the user cold start problem of recommender systems.

Active learning algorithm for alleviating the user cold start problem of recommender systems.

A key challenge in recommender systems is how to profile new users. A popular solution for this problem is to use active learning strategies. These strategies request ratings for a small set of carefully selected items to reveal the preferences of new users. In this paper, we propose a new decision tree-based algorithm for selecting these items. Treating the recommender system as a black box, the ratings collected from interviewing new users are passed on to the recommender system with the intention of improving its performance. Extensive offline evaluation with two data sets and various recommender algorithms shows that our algorithm does indeed improve the performance of the underlying recommender algorithm if users are able to rate most of the items that are presented to them during the interview. However, online evaluation with 50 real users could not prove that our algorithm does indeed have a positive impact on the performance of the underlying recommender algorithm. This reveals the discrepancy between offline and online evaluations of active learning techniques applied in the context of recommender systems. This is due to the fact that real users are not always able to rate the item selected by the active learning algorithm and therefore cannot provide the requested information, in contrast to many machine learning scenarios where the labeling of all samples is possible. Hence, further research is required to provide more certainty regarding the impact of active learning strategies on recommender algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信