ColoViT:高效网络和视觉变压器的协同整合,用于晚期结肠癌检测。

IF 2.7 3区 医学 Q3 ONCOLOGY
Bukka Sathyanarayana, Sreedevi Alampally, Ramakrishna Akella, Veera Venkata Raghunath Indugu
{"title":"ColoViT:高效网络和视觉变压器的协同整合,用于晚期结肠癌检测。","authors":"Bukka Sathyanarayana, Sreedevi Alampally, Ramakrishna Akella, Veera Venkata Raghunath Indugu","doi":"10.1007/s00432-025-06199-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Colon cancer remains a leading cause of cancer-related mortality globally, highlighting the urgent need for advanced diagnostic methods to improve early detection and patient outcomes.</p><p><strong>Methods: </strong>This study introduces ColoViT, a hybrid diagnostic framework that synergistically integrates EfficientNet and Vision Transformers. EfficientNet contributes scalability and high performance in feature extraction, while Vision Transformers effectively capture the global contextual information within colonoscopic images.</p><p><strong>Results: </strong>The integration of these models enables ColoViT to deliver precise and comprehensive image analysis, significantly improving the detection of precancerous lesions and early-stage colon cancers. The proposed model achieved a recall of 92.4%, precision of 98.9%, F1-score of 98.4%, and an AUC of 99% in our preliminary evaluation.</p><p><strong>Conclusion: </strong>ColoViT demonstrates superior performance over existing models, offering a robust solution for enhancing the early detection of colon cancer through deep learning-based image analysis.</p>","PeriodicalId":15118,"journal":{"name":"Journal of Cancer Research and Clinical Oncology","volume":"151 7","pages":"209"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12241262/pdf/","citationCount":"0","resultStr":"{\"title\":\"ColoViT: a synergistic integration of EfficientNet and vision transformers for advanced colon cancer detection.\",\"authors\":\"Bukka Sathyanarayana, Sreedevi Alampally, Ramakrishna Akella, Veera Venkata Raghunath Indugu\",\"doi\":\"10.1007/s00432-025-06199-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Colon cancer remains a leading cause of cancer-related mortality globally, highlighting the urgent need for advanced diagnostic methods to improve early detection and patient outcomes.</p><p><strong>Methods: </strong>This study introduces ColoViT, a hybrid diagnostic framework that synergistically integrates EfficientNet and Vision Transformers. EfficientNet contributes scalability and high performance in feature extraction, while Vision Transformers effectively capture the global contextual information within colonoscopic images.</p><p><strong>Results: </strong>The integration of these models enables ColoViT to deliver precise and comprehensive image analysis, significantly improving the detection of precancerous lesions and early-stage colon cancers. The proposed model achieved a recall of 92.4%, precision of 98.9%, F1-score of 98.4%, and an AUC of 99% in our preliminary evaluation.</p><p><strong>Conclusion: </strong>ColoViT demonstrates superior performance over existing models, offering a robust solution for enhancing the early detection of colon cancer through deep learning-based image analysis.</p>\",\"PeriodicalId\":15118,\"journal\":{\"name\":\"Journal of Cancer Research and Clinical Oncology\",\"volume\":\"151 7\",\"pages\":\"209\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12241262/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cancer Research and Clinical Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00432-025-06199-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cancer Research and Clinical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00432-025-06199-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:结肠癌仍然是全球癌症相关死亡的主要原因,迫切需要先进的诊断方法来改善早期发现和患者预后。方法:本研究介绍了ColoViT,这是一个混合诊断框架,协同集成了EfficientNet和Vision Transformers。EfficientNet在特征提取方面具有可扩展性和高性能,而Vision Transformers则有效地捕获结肠镜图像中的全局上下文信息。结果:这些模型的整合使ColoViT能够提供精确和全面的图像分析,显著提高了癌前病变和早期结肠癌的检测。在我们的初步评估中,该模型的召回率为92.4%,精度为98.9%,f1得分为98.4%,AUC为99%。结论:ColoViT具有优于现有模型的性能,通过基于深度学习的图像分析,为增强结肠癌的早期检测提供了一个强大的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ColoViT: a synergistic integration of EfficientNet and vision transformers for advanced colon cancer detection.

Background: Colon cancer remains a leading cause of cancer-related mortality globally, highlighting the urgent need for advanced diagnostic methods to improve early detection and patient outcomes.

Methods: This study introduces ColoViT, a hybrid diagnostic framework that synergistically integrates EfficientNet and Vision Transformers. EfficientNet contributes scalability and high performance in feature extraction, while Vision Transformers effectively capture the global contextual information within colonoscopic images.

Results: The integration of these models enables ColoViT to deliver precise and comprehensive image analysis, significantly improving the detection of precancerous lesions and early-stage colon cancers. The proposed model achieved a recall of 92.4%, precision of 98.9%, F1-score of 98.4%, and an AUC of 99% in our preliminary evaluation.

Conclusion: ColoViT demonstrates superior performance over existing models, offering a robust solution for enhancing the early detection of colon cancer through deep learning-based image analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
2.80%
发文量
577
审稿时长
2 months
期刊介绍: The "Journal of Cancer Research and Clinical Oncology" publishes significant and up-to-date articles within the fields of experimental and clinical oncology. The journal, which is chiefly devoted to Original papers, also includes Reviews as well as Editorials and Guest editorials on current, controversial topics. The section Letters to the editors provides a forum for a rapid exchange of comments and information concerning previously published papers and topics of current interest. Meeting reports provide current information on the latest results presented at important congresses. The following fields are covered: carcinogenesis - etiology, mechanisms; molecular biology; recent developments in tumor therapy; general diagnosis; laboratory diagnosis; diagnostic and experimental pathology; oncologic surgery; and epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信