从显微组织到器官:基于器官构建块的生物打印重建手术的未来。

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Qiumei Ji, Ruize Tang, Xingran Liu, Jing Yang, Xiangqi Liu, Qingfeng Li, Ru-Lin Huang
{"title":"从显微组织到器官:基于器官构建块的生物打印重建手术的未来。","authors":"Qiumei Ji, Ruize Tang, Xingran Liu, Jing Yang, Xiangqi Liu, Qingfeng Li, Ru-Lin Huang","doi":"10.1088/1758-5090/aded37","DOIUrl":null,"url":null,"abstract":"<p><p>Reconstructive surgery seeks to restore the aesthetic appearance and functional integrity of damaged organs and tissues. However, traditional approaches are fundamentally constrained by donor tissue scarcity and associated morbidity, highlighting the urgent need for engineered tissue substitutes. Organ building block (OBB)-based bioprinting has emerged as a promising strategy, utilizing microtissues with defined microarchitectural features as modular building units for three-dimensional bioprinting. This bottom-up approach facilitates the fabrication of personalized grafts that closely mimic the structural and functional characteristics of native tissues. In this review, we comprehensively summarize the current advances in OBB-based bioprinting technologies and their applications in reconstructive surgery, with a particular emphasis on cartilage, bone, vessels, muscle, and skin tissue reconstruction. We discuss the translational potential of this strategy, highlight key technical challenges, and propose future directions to facilitate clinical adoption. With ongoing innovation, OBB-based bioprinting holds the potential to revolutionize reconstructive surgery by enabling the production of functional, patient-specific tissue substitutes.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From microtissues to organs: the future of reconstructive surgery with organ building block-based bioprinting.\",\"authors\":\"Qiumei Ji, Ruize Tang, Xingran Liu, Jing Yang, Xiangqi Liu, Qingfeng Li, Ru-Lin Huang\",\"doi\":\"10.1088/1758-5090/aded37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reconstructive surgery seeks to restore the aesthetic appearance and functional integrity of damaged organs and tissues. However, traditional approaches are fundamentally constrained by donor tissue scarcity and associated morbidity, highlighting the urgent need for engineered tissue substitutes. Organ building block (OBB)-based bioprinting has emerged as a promising strategy, utilizing microtissues with defined microarchitectural features as modular building units for three-dimensional bioprinting. This bottom-up approach facilitates the fabrication of personalized grafts that closely mimic the structural and functional characteristics of native tissues. In this review, we comprehensively summarize the current advances in OBB-based bioprinting technologies and their applications in reconstructive surgery, with a particular emphasis on cartilage, bone, vessels, muscle, and skin tissue reconstruction. We discuss the translational potential of this strategy, highlight key technical challenges, and propose future directions to facilitate clinical adoption. With ongoing innovation, OBB-based bioprinting holds the potential to revolutionize reconstructive surgery by enabling the production of functional, patient-specific tissue substitutes.</p>\",\"PeriodicalId\":8964,\"journal\":{\"name\":\"Biofabrication\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofabrication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1758-5090/aded37\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/aded37","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

重建外科旨在恢复受损器官和组织的美观外观和功能完整性。然而,传统的方法从根本上受到供体组织稀缺和相关发病率的限制,这强调了对工程组织替代品的需求。基于器官构建块(OBB)的生物打印已经成为一种有前途的策略,利用具有定义的微结构特征的微组织作为三维(3D)生物打印的模块化建筑单元。这种自底向上的方法使个性化移植物的制造能够密切复制原生组织的结构和功能特性。本文综述了基于obb的生物打印技术的最新进展及其在重建外科中的应用,重点介绍了软骨、骨、血管、肌肉和皮肤组织的重建。我们讨论了该策略的转化潜力,强调了关键的技术挑战,并提出了促进临床采用的未来方向。随着不断的创新,基于obb的生物打印有可能通过生产功能性的、患者特异性的组织替代物来改变重建手术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From microtissues to organs: the future of reconstructive surgery with organ building block-based bioprinting.

Reconstructive surgery seeks to restore the aesthetic appearance and functional integrity of damaged organs and tissues. However, traditional approaches are fundamentally constrained by donor tissue scarcity and associated morbidity, highlighting the urgent need for engineered tissue substitutes. Organ building block (OBB)-based bioprinting has emerged as a promising strategy, utilizing microtissues with defined microarchitectural features as modular building units for three-dimensional bioprinting. This bottom-up approach facilitates the fabrication of personalized grafts that closely mimic the structural and functional characteristics of native tissues. In this review, we comprehensively summarize the current advances in OBB-based bioprinting technologies and their applications in reconstructive surgery, with a particular emphasis on cartilage, bone, vessels, muscle, and skin tissue reconstruction. We discuss the translational potential of this strategy, highlight key technical challenges, and propose future directions to facilitate clinical adoption. With ongoing innovation, OBB-based bioprinting holds the potential to revolutionize reconstructive surgery by enabling the production of functional, patient-specific tissue substitutes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信