ampyation的兴起:从细菌起源到健康和疾病的现代含义。

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Meghomukta Mukherjee, Anju Sreelatha
{"title":"ampyation的兴起:从细菌起源到健康和疾病的现代含义。","authors":"Meghomukta Mukherjee, Anju Sreelatha","doi":"10.1042/BST20253056","DOIUrl":null,"url":null,"abstract":"<p><p>Protein AMPylation is a post-translational modification in which adenosine monophosphate (AMP) from ATP is covalently attached to a target protein via a phosphodiester bond. This reaction is catalyzed by AMPylases, a diverse group of enzymes containing adenylyltransferase, filamentation induced by cyclic AMP (FIC), or kinase domains. As a reversible modification, AMPylation is dynamically regulated by both writer enzymes (AMPylases) and eraser enzymes (deAMPylases). Since its initial discovery in bacterial nitrogen metabolism in 1967, AMPylation has been recognized as a critical regulatory mechanism in both prokaryotic and eukaryotic systems. Recent studies link AMPylation to neurological disorders, diabetes, and cancer metastasis, underscoring its physiological and pathological significance. In this review, we present an overview of the discovery of AMPylases and deAMPylases, highlighting their role in cellular signaling, stress response, and host-pathogen interactions.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The rise of AMPylation: from bacterial beginnings to modern implications in health and disease.\",\"authors\":\"Meghomukta Mukherjee, Anju Sreelatha\",\"doi\":\"10.1042/BST20253056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein AMPylation is a post-translational modification in which adenosine monophosphate (AMP) from ATP is covalently attached to a target protein via a phosphodiester bond. This reaction is catalyzed by AMPylases, a diverse group of enzymes containing adenylyltransferase, filamentation induced by cyclic AMP (FIC), or kinase domains. As a reversible modification, AMPylation is dynamically regulated by both writer enzymes (AMPylases) and eraser enzymes (deAMPylases). Since its initial discovery in bacterial nitrogen metabolism in 1967, AMPylation has been recognized as a critical regulatory mechanism in both prokaryotic and eukaryotic systems. Recent studies link AMPylation to neurological disorders, diabetes, and cancer metastasis, underscoring its physiological and pathological significance. In this review, we present an overview of the discovery of AMPylases and deAMPylases, highlighting their role in cellular signaling, stress response, and host-pathogen interactions.</p>\",\"PeriodicalId\":8841,\"journal\":{\"name\":\"Biochemical Society transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Society transactions\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BST20253056\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20253056","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质氨酰基化是一种翻译后修饰,其中来自ATP的单磷酸腺苷(AMP)通过磷酸二酯键共价附着在靶蛋白上。该反应由AMPylases催化,AMPylases是一组不同的酶,包含腺苷基转移酶,由环AMP (FIC)诱导的丝化,或激酶结构域。作为一种可逆修饰,AMPylation受写入酶(AMPylases)和擦除酶(deAMPylases)的动态调控。自1967年首次在细菌氮代谢中被发现以来,AMPylation已被认为是原核和真核生物系统中一个重要的调节机制。最近的研究将ampyation与神经系统疾病、糖尿病和癌症转移联系起来,强调了其生理和病理意义。在这篇综述中,我们介绍了ampylase和deampylase的发现概况,重点介绍了它们在细胞信号传导、应激反应和宿主-病原体相互作用中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The rise of AMPylation: from bacterial beginnings to modern implications in health and disease.

Protein AMPylation is a post-translational modification in which adenosine monophosphate (AMP) from ATP is covalently attached to a target protein via a phosphodiester bond. This reaction is catalyzed by AMPylases, a diverse group of enzymes containing adenylyltransferase, filamentation induced by cyclic AMP (FIC), or kinase domains. As a reversible modification, AMPylation is dynamically regulated by both writer enzymes (AMPylases) and eraser enzymes (deAMPylases). Since its initial discovery in bacterial nitrogen metabolism in 1967, AMPylation has been recognized as a critical regulatory mechanism in both prokaryotic and eukaryotic systems. Recent studies link AMPylation to neurological disorders, diabetes, and cancer metastasis, underscoring its physiological and pathological significance. In this review, we present an overview of the discovery of AMPylases and deAMPylases, highlighting their role in cellular signaling, stress response, and host-pathogen interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Society transactions
Biochemical Society transactions 生物-生化与分子生物学
CiteScore
7.80
自引率
0.00%
发文量
351
审稿时长
3-6 weeks
期刊介绍: Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences. Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信