Alexandros Paparakis, Leandro D Mena, Pritha Saha, Krishna Mohan Das, Daniel Shirwani, Jorge G Uranga, Martin Hulla
{"title":"三价金属路易斯酸在转移氢化反应中活化CO2。","authors":"Alexandros Paparakis, Leandro D Mena, Pritha Saha, Krishna Mohan Das, Daniel Shirwani, Jorge G Uranga, Martin Hulla","doi":"10.1002/cssc.202500629","DOIUrl":null,"url":null,"abstract":"<p><p>Using γ-terpinene as a bio-derived H<sub>2</sub> surrogate, trivalent metal MX<sub>3</sub> (M = Al, Ga, In, Yb, X = Cl, OTf) Lewis acids (LAs) catalyze CO<sub>2</sub> hydrogenation to formate, yielding p-cymene as the by-product. The resulting formate produces up to 91% N-formamides in tandem hydrogenation-coupling reactions and up to 95% heterocycles, including azoles, via further in situ transfer formylation to ortho-substituted anilines and cyclization at 130 °C and 4 bar. But In(OTf)<sub>3</sub> and a Lewis base fail to abstract a hydride from γ-terpinene. Unlike other LAs and transfer hydrogenation catalysts that induce hydride abstraction from 1,4-cyclohexadiene(s) over B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>, alkali earth or noble metals, MX<sub>3</sub> LAs activate CO<sub>2</sub>, so CO<sub>2</sub> can directly accept a hydride from γ-terpinene during formate synthesis, as shown by density functional theory calculations. This triple role of MX<sub>3</sub> LAs in promoting (1) CO<sub>2</sub> activation, (2) tandem coupling reactions, and (3) transfer formylation at low pressure paves the way for sustainable CO<sub>2</sub> hydrogenation processes, leveraging bio-derived H<sub>2</sub> surrogates to develop efficient carbon capture and utilization systems and to synthesize valuable compounds from renewable feedstocks.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2500629"},"PeriodicalIF":7.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trivalent Metal Lewis Acids Activate CO<sub>2</sub> in Transfer Hydrogenations.\",\"authors\":\"Alexandros Paparakis, Leandro D Mena, Pritha Saha, Krishna Mohan Das, Daniel Shirwani, Jorge G Uranga, Martin Hulla\",\"doi\":\"10.1002/cssc.202500629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Using γ-terpinene as a bio-derived H<sub>2</sub> surrogate, trivalent metal MX<sub>3</sub> (M = Al, Ga, In, Yb, X = Cl, OTf) Lewis acids (LAs) catalyze CO<sub>2</sub> hydrogenation to formate, yielding p-cymene as the by-product. The resulting formate produces up to 91% N-formamides in tandem hydrogenation-coupling reactions and up to 95% heterocycles, including azoles, via further in situ transfer formylation to ortho-substituted anilines and cyclization at 130 °C and 4 bar. But In(OTf)<sub>3</sub> and a Lewis base fail to abstract a hydride from γ-terpinene. Unlike other LAs and transfer hydrogenation catalysts that induce hydride abstraction from 1,4-cyclohexadiene(s) over B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>, alkali earth or noble metals, MX<sub>3</sub> LAs activate CO<sub>2</sub>, so CO<sub>2</sub> can directly accept a hydride from γ-terpinene during formate synthesis, as shown by density functional theory calculations. This triple role of MX<sub>3</sub> LAs in promoting (1) CO<sub>2</sub> activation, (2) tandem coupling reactions, and (3) transfer formylation at low pressure paves the way for sustainable CO<sub>2</sub> hydrogenation processes, leveraging bio-derived H<sub>2</sub> surrogates to develop efficient carbon capture and utilization systems and to synthesize valuable compounds from renewable feedstocks.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e2500629\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202500629\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500629","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
以γ-萜烯为生物衍生H2替代物,三价金属MX3 (M = Al, Ga, In, Yb, X = Cl, OTf)路易斯酸(LAs)催化CO2加氢生成甲酸,副产物对伞花烃。在串联氢化偶联反应中,甲酸酯产生高达91%的n-甲酰胺和高达95%的杂环,包括唑,通过进一步的原位转移甲酰化到邻位取代苯胺并在130°C和4 bar下环化。但In(OTf)3和路易斯碱不能从γ-萜烯中提取氢化物。不同于其他LAs和转移加氢催化剂诱导1,4-环己二烯(s)在B(C6F5)3、碱土或贵金属上的氢化物析出,MX3 LAs激活CO2,因此CO2在甲酸合成过程中可以直接接受γ-萜烯的氢化物,如密度泛函理论计算所示。MX3 LAs在促进(1)CO2活化,(2)串联偶联反应和(3)低压转移甲酰化中的三重作用为可持续的CO2加氢过程铺平了道路,利用生物衍生的H2替代品开发高效的碳捕获和利用系统,并从可再生原料合成有价值的化合物。
Trivalent Metal Lewis Acids Activate CO2 in Transfer Hydrogenations.
Using γ-terpinene as a bio-derived H2 surrogate, trivalent metal MX3 (M = Al, Ga, In, Yb, X = Cl, OTf) Lewis acids (LAs) catalyze CO2 hydrogenation to formate, yielding p-cymene as the by-product. The resulting formate produces up to 91% N-formamides in tandem hydrogenation-coupling reactions and up to 95% heterocycles, including azoles, via further in situ transfer formylation to ortho-substituted anilines and cyclization at 130 °C and 4 bar. But In(OTf)3 and a Lewis base fail to abstract a hydride from γ-terpinene. Unlike other LAs and transfer hydrogenation catalysts that induce hydride abstraction from 1,4-cyclohexadiene(s) over B(C6F5)3, alkali earth or noble metals, MX3 LAs activate CO2, so CO2 can directly accept a hydride from γ-terpinene during formate synthesis, as shown by density functional theory calculations. This triple role of MX3 LAs in promoting (1) CO2 activation, (2) tandem coupling reactions, and (3) transfer formylation at low pressure paves the way for sustainable CO2 hydrogenation processes, leveraging bio-derived H2 surrogates to develop efficient carbon capture and utilization systems and to synthesize valuable compounds from renewable feedstocks.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology