{"title":"负载金属的氧化钛光催化剂的非均相光催化脱氢交叉偶联及加成反应","authors":"Hisao Yoshida","doi":"10.1002/aesr.202400439","DOIUrl":null,"url":null,"abstract":"<p>Heterogeneous photocatalytic reactions begin with photoexcitation, followed by simultaneous reduction and oxidation processes that generate radical intermediates. These intermediates contribute to unique product selectivity due to distinct reaction mechanisms. This article presents several heterogeneous photocatalytic reactions involving metal-loaded titanium oxide photocatalysts for organic transformations, as elucidated by our recent studies. While their productivity has not yet reached a level sufficient for practical applications, these findings of novel photocatalytic reactions demonstrate the significant potential of heterogeneous photocatalysis. Notably, since photocatalysis utilizes photoenergy to drive chemical reactions, even endergonic reactions can be promoted under mild conditions, where the photoenergy is converted into the chemical potential of the products. Various photocatalytic reactions are introduced, including dehydrogenative cross-coupling reactions and addition reactions, along with their underlying reaction mechanisms: radical addition-elimination, radical–radical coupling, and radical anti-Markovnikov addition to alkene. Additionally, the roles of the metal cocatalysts are highlighted as a crucial factor influencing these unique reaction mechanisms in heterogeneous photocatalytic organic transformations.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"6 7","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400439","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous Photocatalytic Dehydrogenative Cross-Coupling and Addition Reaction with Metal-Loaded Titanium Oxide Photocatalysts\",\"authors\":\"Hisao Yoshida\",\"doi\":\"10.1002/aesr.202400439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heterogeneous photocatalytic reactions begin with photoexcitation, followed by simultaneous reduction and oxidation processes that generate radical intermediates. These intermediates contribute to unique product selectivity due to distinct reaction mechanisms. This article presents several heterogeneous photocatalytic reactions involving metal-loaded titanium oxide photocatalysts for organic transformations, as elucidated by our recent studies. While their productivity has not yet reached a level sufficient for practical applications, these findings of novel photocatalytic reactions demonstrate the significant potential of heterogeneous photocatalysis. Notably, since photocatalysis utilizes photoenergy to drive chemical reactions, even endergonic reactions can be promoted under mild conditions, where the photoenergy is converted into the chemical potential of the products. Various photocatalytic reactions are introduced, including dehydrogenative cross-coupling reactions and addition reactions, along with their underlying reaction mechanisms: radical addition-elimination, radical–radical coupling, and radical anti-Markovnikov addition to alkene. Additionally, the roles of the metal cocatalysts are highlighted as a crucial factor influencing these unique reaction mechanisms in heterogeneous photocatalytic organic transformations.</p>\",\"PeriodicalId\":29794,\"journal\":{\"name\":\"Advanced Energy and Sustainability Research\",\"volume\":\"6 7\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400439\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy and Sustainability Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aesr.202400439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aesr.202400439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Heterogeneous Photocatalytic Dehydrogenative Cross-Coupling and Addition Reaction with Metal-Loaded Titanium Oxide Photocatalysts
Heterogeneous photocatalytic reactions begin with photoexcitation, followed by simultaneous reduction and oxidation processes that generate radical intermediates. These intermediates contribute to unique product selectivity due to distinct reaction mechanisms. This article presents several heterogeneous photocatalytic reactions involving metal-loaded titanium oxide photocatalysts for organic transformations, as elucidated by our recent studies. While their productivity has not yet reached a level sufficient for practical applications, these findings of novel photocatalytic reactions demonstrate the significant potential of heterogeneous photocatalysis. Notably, since photocatalysis utilizes photoenergy to drive chemical reactions, even endergonic reactions can be promoted under mild conditions, where the photoenergy is converted into the chemical potential of the products. Various photocatalytic reactions are introduced, including dehydrogenative cross-coupling reactions and addition reactions, along with their underlying reaction mechanisms: radical addition-elimination, radical–radical coupling, and radical anti-Markovnikov addition to alkene. Additionally, the roles of the metal cocatalysts are highlighted as a crucial factor influencing these unique reaction mechanisms in heterogeneous photocatalytic organic transformations.
期刊介绍:
Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields.
In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including:
CAS: Chemical Abstracts Service (ACS)
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (Clarivate Analytics)
INSPEC (IET)
Web of Science (Clarivate Analytics).