Thi Thuy Dung Nguyen, Van Thong Nguyen, Assoc. Prof. Viet Dung Nguyen, Assoc. Prof. Kieu Hiep Le
{"title":"干燥系统设计的升级方法:从单样品动力学到干燥机模型","authors":"Thi Thuy Dung Nguyen, Van Thong Nguyen, Assoc. Prof. Viet Dung Nguyen, Assoc. Prof. Kieu Hiep Le","doi":"10.1002/cite.202400136","DOIUrl":null,"url":null,"abstract":"<p>An upscaling methodology for designing convective drying systems is presented, specifically focusing on tray and belt dryers of sliced food. Based on the convective drying history of a single food slice, a semi-empirical model, named the Reaction Engineering Approach (REA) model, is developed to describe the heat and mass interaction between the food and drying agent. The model is integrated into the belt dryer's energy and mass conservation equations for co-current and counter-current configurations. The results indicate a remarkable maldistribution of air temperature and relative humidity along the belt and tray length, leading to a significant variation of the drying rate. The drying time and the moisture content uniformity are strongly dependent on the airflow and product flow configurations. The methodology proposed in this work can help design and operate the drying system accurately by knowing the single sample drying kinetics.</p>","PeriodicalId":9912,"journal":{"name":"Chemie Ingenieur Technik","volume":"97 7","pages":"747-758"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Upscaling Method in Drying System Design: From Single Sample Kinetic to Dryer Models\",\"authors\":\"Thi Thuy Dung Nguyen, Van Thong Nguyen, Assoc. Prof. Viet Dung Nguyen, Assoc. Prof. Kieu Hiep Le\",\"doi\":\"10.1002/cite.202400136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An upscaling methodology for designing convective drying systems is presented, specifically focusing on tray and belt dryers of sliced food. Based on the convective drying history of a single food slice, a semi-empirical model, named the Reaction Engineering Approach (REA) model, is developed to describe the heat and mass interaction between the food and drying agent. The model is integrated into the belt dryer's energy and mass conservation equations for co-current and counter-current configurations. The results indicate a remarkable maldistribution of air temperature and relative humidity along the belt and tray length, leading to a significant variation of the drying rate. The drying time and the moisture content uniformity are strongly dependent on the airflow and product flow configurations. The methodology proposed in this work can help design and operate the drying system accurately by knowing the single sample drying kinetics.</p>\",\"PeriodicalId\":9912,\"journal\":{\"name\":\"Chemie Ingenieur Technik\",\"volume\":\"97 7\",\"pages\":\"747-758\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemie Ingenieur Technik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cite.202400136\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Ingenieur Technik","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cite.202400136","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
An Upscaling Method in Drying System Design: From Single Sample Kinetic to Dryer Models
An upscaling methodology for designing convective drying systems is presented, specifically focusing on tray and belt dryers of sliced food. Based on the convective drying history of a single food slice, a semi-empirical model, named the Reaction Engineering Approach (REA) model, is developed to describe the heat and mass interaction between the food and drying agent. The model is integrated into the belt dryer's energy and mass conservation equations for co-current and counter-current configurations. The results indicate a remarkable maldistribution of air temperature and relative humidity along the belt and tray length, leading to a significant variation of the drying rate. The drying time and the moisture content uniformity are strongly dependent on the airflow and product flow configurations. The methodology proposed in this work can help design and operate the drying system accurately by knowing the single sample drying kinetics.
期刊介绍:
Die Chemie Ingenieur Technik ist die wohl angesehenste deutschsprachige Zeitschrift für Verfahrensingenieure, technische Chemiker, Apparatebauer und Biotechnologen. Als Fachorgan von DECHEMA, GDCh und VDI-GVC gilt sie als das unverzichtbare Forum für den Erfahrungsaustausch zwischen Forschern und Anwendern aus Industrie, Forschung und Entwicklung. Wissenschaftlicher Fortschritt und Praxisnähe: Eine Kombination, die es nur in der CIT gibt!