利用原位/操作同步辐射技术窥见固液界面动力学

IF 5.7 Q2 ENERGY & FUELS
Hsiang-Chun Yu, Yu-Ru Lin, Chun-Kuo Peng, Yi-Dong Lin, Yu-Chang Lin, Shih-Ching Huang, Hao Ming Chen, Yan-Gu Lin
{"title":"利用原位/操作同步辐射技术窥见固液界面动力学","authors":"Hsiang-Chun Yu,&nbsp;Yu-Ru Lin,&nbsp;Chun-Kuo Peng,&nbsp;Yi-Dong Lin,&nbsp;Yu-Chang Lin,&nbsp;Shih-Ching Huang,&nbsp;Hao Ming Chen,&nbsp;Yan-Gu Lin","doi":"10.1002/aesr.202500029","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical processes involving electrified solid–liquid interfaces are pivotal in the area of catalysis reaction. Nevertheless, the microscopic characteristics of these catalytic interfaces, particularly the structural transformations they undergo during reactions, have yet to be fully understood—posing considerable implications for practical applications. Exploring the interface between catalysts and electrolytes can provide valuable insights into the development of a concise electrocatalytic mechanism. Advanced synchrotron X-ray methodologies have demonstrated their efficacy in analyzing the structural and electronic characteristics of electrocatalysts. Combined with in situ/operando techniques, these approaches successfully illuminate dynamic transformations and unveil the genuine active sites. In this review, a comprehensive overview of the latest advancements in key in situ/operando techniques, such as scattering and spectroscopy, highlighting their current limitations and challenges, is provided. Building on the core principles of these techniques, their robust characterization capabilities are explored for revealing and understanding electrocatalytic mechanisms. Finally, to address the complexity of catalytic processes, “in situ/operando electrocatalytic mechanism probing map” specifically designed for liquid–solid interfaces, offering a clear guide to systematically uncover the fundamental nature of electrocatalytic mechanisms, is proposed</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"6 7","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202500029","citationCount":"0","resultStr":"{\"title\":\"Glimpsing the Dynamics at Solid–Liquid Interfaces Using In Situ/Operando Synchrotron Radiation Techniques\",\"authors\":\"Hsiang-Chun Yu,&nbsp;Yu-Ru Lin,&nbsp;Chun-Kuo Peng,&nbsp;Yi-Dong Lin,&nbsp;Yu-Chang Lin,&nbsp;Shih-Ching Huang,&nbsp;Hao Ming Chen,&nbsp;Yan-Gu Lin\",\"doi\":\"10.1002/aesr.202500029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrochemical processes involving electrified solid–liquid interfaces are pivotal in the area of catalysis reaction. Nevertheless, the microscopic characteristics of these catalytic interfaces, particularly the structural transformations they undergo during reactions, have yet to be fully understood—posing considerable implications for practical applications. Exploring the interface between catalysts and electrolytes can provide valuable insights into the development of a concise electrocatalytic mechanism. Advanced synchrotron X-ray methodologies have demonstrated their efficacy in analyzing the structural and electronic characteristics of electrocatalysts. Combined with in situ/operando techniques, these approaches successfully illuminate dynamic transformations and unveil the genuine active sites. In this review, a comprehensive overview of the latest advancements in key in situ/operando techniques, such as scattering and spectroscopy, highlighting their current limitations and challenges, is provided. Building on the core principles of these techniques, their robust characterization capabilities are explored for revealing and understanding electrocatalytic mechanisms. Finally, to address the complexity of catalytic processes, “in situ/operando electrocatalytic mechanism probing map” specifically designed for liquid–solid interfaces, offering a clear guide to systematically uncover the fundamental nature of electrocatalytic mechanisms, is proposed</p>\",\"PeriodicalId\":29794,\"journal\":{\"name\":\"Advanced Energy and Sustainability Research\",\"volume\":\"6 7\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202500029\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy and Sustainability Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202500029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202500029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

涉及带电固液界面的电化学过程是催化反应领域的关键。然而,这些催化界面的微观特征,特别是它们在反应过程中经历的结构转变,尚未得到充分理解,这对实际应用产生了相当大的影响。探索催化剂和电解质之间的界面可以为简明的电催化机理的发展提供有价值的见解。先进的同步加速器x射线方法在分析电催化剂的结构和电子特性方面已经证明了它们的有效性。结合原位/operando技术,这些方法成功地阐明了动态转化并揭示了真正的活性位点。本文综述了原位/operando关键技术的最新进展,如散射和光谱学,并强调了它们目前的局限性和挑战。建立在这些技术的核心原则,他们强大的表征能力,揭示和理解电催化机制的探索。最后,为了解决催化过程的复杂性,提出了专门为液-固界面设计的“原位/operando电催化机制探测图”,为系统地揭示电催化机制的基本性质提供了明确的指导
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Glimpsing the Dynamics at Solid–Liquid Interfaces Using In Situ/Operando Synchrotron Radiation Techniques

Glimpsing the Dynamics at Solid–Liquid Interfaces Using In Situ/Operando Synchrotron Radiation Techniques

Electrochemical processes involving electrified solid–liquid interfaces are pivotal in the area of catalysis reaction. Nevertheless, the microscopic characteristics of these catalytic interfaces, particularly the structural transformations they undergo during reactions, have yet to be fully understood—posing considerable implications for practical applications. Exploring the interface between catalysts and electrolytes can provide valuable insights into the development of a concise electrocatalytic mechanism. Advanced synchrotron X-ray methodologies have demonstrated their efficacy in analyzing the structural and electronic characteristics of electrocatalysts. Combined with in situ/operando techniques, these approaches successfully illuminate dynamic transformations and unveil the genuine active sites. In this review, a comprehensive overview of the latest advancements in key in situ/operando techniques, such as scattering and spectroscopy, highlighting their current limitations and challenges, is provided. Building on the core principles of these techniques, their robust characterization capabilities are explored for revealing and understanding electrocatalytic mechanisms. Finally, to address the complexity of catalytic processes, “in situ/operando electrocatalytic mechanism probing map” specifically designed for liquid–solid interfaces, offering a clear guide to systematically uncover the fundamental nature of electrocatalytic mechanisms, is proposed

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
3.40%
发文量
0
期刊介绍: Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields. In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including: CAS: Chemical Abstracts Service (ACS) Directory of Open Access Journals (DOAJ) Emerging Sources Citation Index (Clarivate Analytics) INSPEC (IET) Web of Science (Clarivate Analytics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信