Leonardo Novelli, Lionel Barnett, Anil K. Seth, Adeel Razi
{"title":"fMRI血流动力学响应函数的最小相位特性及其对格兰杰因果关系的影响","authors":"Leonardo Novelli, Lionel Barnett, Anil K. Seth, Adeel Razi","doi":"10.1002/hbm.70285","DOIUrl":null,"url":null,"abstract":"<p>Granger causality (GC) is widely used in neuroimaging to estimate directed statistical dependence between brain regions using time series of brain activity. A known problem is that fMRI measures brain activity indirectly via the blood-oxygen-level-dependent (BOLD) signal, which can distort GC estimates by introducing different time-to-peak responses across brain regions. However, how these distortions affect the validity of inferred connections is not fully understood. Previous studies have shown that false positives are not introduced if the haemodynamic response function (HRF) is minimum-phase; but whether the HRF is actually minimum-phase has remained contentious. Here, we address this issue by studying the transfer functions of three realistic biophysical models. We find that the minimum-phase condition is met for a wide range of physiologically plausible parameter values. Therefore, statistical testing of GC can be viable even if the HRF varies across brain regions, with the following two limitations. First, the minimum-phase condition is violated for parameter combinations that generate an initial dip in the HRF. Second, slow sampling of the BOLD signal (seconds) compared to the timescales of neural signal propagation (milliseconds) may still introduce spurious GC inferences. Beyond GC analysis, the closed-form expressions for the transfer functions of these popular HRF models are valuable for modeling fMRI time series since they balance mathematical tractability with biological plausibility.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 10","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70285","citationCount":"0","resultStr":"{\"title\":\"Minimum-Phase Property of the Hemodynamic Response Function, and Implications for Granger Causality in fMRI\",\"authors\":\"Leonardo Novelli, Lionel Barnett, Anil K. Seth, Adeel Razi\",\"doi\":\"10.1002/hbm.70285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Granger causality (GC) is widely used in neuroimaging to estimate directed statistical dependence between brain regions using time series of brain activity. A known problem is that fMRI measures brain activity indirectly via the blood-oxygen-level-dependent (BOLD) signal, which can distort GC estimates by introducing different time-to-peak responses across brain regions. However, how these distortions affect the validity of inferred connections is not fully understood. Previous studies have shown that false positives are not introduced if the haemodynamic response function (HRF) is minimum-phase; but whether the HRF is actually minimum-phase has remained contentious. Here, we address this issue by studying the transfer functions of three realistic biophysical models. We find that the minimum-phase condition is met for a wide range of physiologically plausible parameter values. Therefore, statistical testing of GC can be viable even if the HRF varies across brain regions, with the following two limitations. First, the minimum-phase condition is violated for parameter combinations that generate an initial dip in the HRF. Second, slow sampling of the BOLD signal (seconds) compared to the timescales of neural signal propagation (milliseconds) may still introduce spurious GC inferences. Beyond GC analysis, the closed-form expressions for the transfer functions of these popular HRF models are valuable for modeling fMRI time series since they balance mathematical tractability with biological plausibility.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 10\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70285\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70285\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70285","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Minimum-Phase Property of the Hemodynamic Response Function, and Implications for Granger Causality in fMRI
Granger causality (GC) is widely used in neuroimaging to estimate directed statistical dependence between brain regions using time series of brain activity. A known problem is that fMRI measures brain activity indirectly via the blood-oxygen-level-dependent (BOLD) signal, which can distort GC estimates by introducing different time-to-peak responses across brain regions. However, how these distortions affect the validity of inferred connections is not fully understood. Previous studies have shown that false positives are not introduced if the haemodynamic response function (HRF) is minimum-phase; but whether the HRF is actually minimum-phase has remained contentious. Here, we address this issue by studying the transfer functions of three realistic biophysical models. We find that the minimum-phase condition is met for a wide range of physiologically plausible parameter values. Therefore, statistical testing of GC can be viable even if the HRF varies across brain regions, with the following two limitations. First, the minimum-phase condition is violated for parameter combinations that generate an initial dip in the HRF. Second, slow sampling of the BOLD signal (seconds) compared to the timescales of neural signal propagation (milliseconds) may still introduce spurious GC inferences. Beyond GC analysis, the closed-form expressions for the transfer functions of these popular HRF models are valuable for modeling fMRI time series since they balance mathematical tractability with biological plausibility.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.