{"title":"摄动系统安全MPC的优先驱动约束软化","authors":"Ying Shuai Quan;Mohammad Jeddi;Francesco Prignoli;Paolo Falcone","doi":"10.1109/LCSYS.2025.3580494","DOIUrl":null,"url":null,"abstract":"This letter presents a safe model predictive control framework designed to guarantee the satisfaction of hard safety constraints, for perturbed dynamical systems. Safety is guaranteed by softening the constraints selected on a priority basis from a subset of constraints defined by the designer. Since such an online selection is the result of an auxiliary optimization problem, its computational overhead is alleviated by off-line learning its approximated solution, rather than solving it exactly online. Simulation results, obtained from an automated driving application, show that the proposed approach provides guarantees of collision-avoidance hard constraints despite the unpredicted behaviors of the surrounding environment.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"1069-1074"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11072918","citationCount":"0","resultStr":"{\"title\":\"Priority-Driven Constraints Softening in Safe MPC for Perturbed Systems\",\"authors\":\"Ying Shuai Quan;Mohammad Jeddi;Francesco Prignoli;Paolo Falcone\",\"doi\":\"10.1109/LCSYS.2025.3580494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a safe model predictive control framework designed to guarantee the satisfaction of hard safety constraints, for perturbed dynamical systems. Safety is guaranteed by softening the constraints selected on a priority basis from a subset of constraints defined by the designer. Since such an online selection is the result of an auxiliary optimization problem, its computational overhead is alleviated by off-line learning its approximated solution, rather than solving it exactly online. Simulation results, obtained from an automated driving application, show that the proposed approach provides guarantees of collision-avoidance hard constraints despite the unpredicted behaviors of the surrounding environment.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"9 \",\"pages\":\"1069-1074\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11072918\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11072918/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11072918/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Priority-Driven Constraints Softening in Safe MPC for Perturbed Systems
This letter presents a safe model predictive control framework designed to guarantee the satisfaction of hard safety constraints, for perturbed dynamical systems. Safety is guaranteed by softening the constraints selected on a priority basis from a subset of constraints defined by the designer. Since such an online selection is the result of an auxiliary optimization problem, its computational overhead is alleviated by off-line learning its approximated solution, rather than solving it exactly online. Simulation results, obtained from an automated driving application, show that the proposed approach provides guarantees of collision-avoidance hard constraints despite the unpredicted behaviors of the surrounding environment.