Hala Mohammad , Bochao Li , Jamilu Tijjani Baraya , Zhenlong Zhao , Xiaowei Song , Jingquan Lin
{"title":"极紫外掩模毛坯的光化缺陷检测与表征","authors":"Hala Mohammad , Bochao Li , Jamilu Tijjani Baraya , Zhenlong Zhao , Xiaowei Song , Jingquan Lin","doi":"10.1016/j.mee.2025.112378","DOIUrl":null,"url":null,"abstract":"<div><div>Extreme ultraviolet (EUV) lithography is crucial for advanced semiconductor manufacturing, relying on sophisticated mask technology to transfer intricate patterns onto silicon wafers. The integrity of the EUV mask blanks is essential for producing high-quality masks and semiconductor devices. However, defects in mask blanks, particularly multilayer phase defects, can significantly degrade lithographic quality, affecting device yield and performance. Actinic blank inspection (ABI) has emerged as the most effective strategy for evaluating the initial quality of EUV mask blanks and identifying defects that may compromise the wafer integrity. Additionally, defect characterization helps determine the nature of the defect, its printability, and its potential for repair. This review surveys recent advancements in ABI and defect characterization, covering a range of methodologies, commercial inspection tools and related research efforts that aimed at improving the detection and characterization of multilayer defects.</div></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"300 ","pages":"Article 112378"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Actinic defect inspection and characterization for extreme ultraviolet mask blanks\",\"authors\":\"Hala Mohammad , Bochao Li , Jamilu Tijjani Baraya , Zhenlong Zhao , Xiaowei Song , Jingquan Lin\",\"doi\":\"10.1016/j.mee.2025.112378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Extreme ultraviolet (EUV) lithography is crucial for advanced semiconductor manufacturing, relying on sophisticated mask technology to transfer intricate patterns onto silicon wafers. The integrity of the EUV mask blanks is essential for producing high-quality masks and semiconductor devices. However, defects in mask blanks, particularly multilayer phase defects, can significantly degrade lithographic quality, affecting device yield and performance. Actinic blank inspection (ABI) has emerged as the most effective strategy for evaluating the initial quality of EUV mask blanks and identifying defects that may compromise the wafer integrity. Additionally, defect characterization helps determine the nature of the defect, its printability, and its potential for repair. This review surveys recent advancements in ABI and defect characterization, covering a range of methodologies, commercial inspection tools and related research efforts that aimed at improving the detection and characterization of multilayer defects.</div></div>\",\"PeriodicalId\":18557,\"journal\":{\"name\":\"Microelectronic Engineering\",\"volume\":\"300 \",\"pages\":\"Article 112378\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016793172500067X\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016793172500067X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Actinic defect inspection and characterization for extreme ultraviolet mask blanks
Extreme ultraviolet (EUV) lithography is crucial for advanced semiconductor manufacturing, relying on sophisticated mask technology to transfer intricate patterns onto silicon wafers. The integrity of the EUV mask blanks is essential for producing high-quality masks and semiconductor devices. However, defects in mask blanks, particularly multilayer phase defects, can significantly degrade lithographic quality, affecting device yield and performance. Actinic blank inspection (ABI) has emerged as the most effective strategy for evaluating the initial quality of EUV mask blanks and identifying defects that may compromise the wafer integrity. Additionally, defect characterization helps determine the nature of the defect, its printability, and its potential for repair. This review surveys recent advancements in ABI and defect characterization, covering a range of methodologies, commercial inspection tools and related research efforts that aimed at improving the detection and characterization of multilayer defects.
期刊介绍:
Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.