二氧化钒集成MAPbI3太阳能电池增强热稳定性和光伏性能的数值模拟

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Min Li , Shuai Guo , Xiaoyu Zhao , Sufeng Quan , Xuefeng Wang , Mengxuan Wu , Dieter Weller , Ruibin Liu
{"title":"二氧化钒集成MAPbI3太阳能电池增强热稳定性和光伏性能的数值模拟","authors":"Min Li ,&nbsp;Shuai Guo ,&nbsp;Xiaoyu Zhao ,&nbsp;Sufeng Quan ,&nbsp;Xuefeng Wang ,&nbsp;Mengxuan Wu ,&nbsp;Dieter Weller ,&nbsp;Ruibin Liu","doi":"10.1016/j.mseb.2025.118550","DOIUrl":null,"url":null,"abstract":"<div><div>The selection of appropriate transport layer materials is of vital importance for enhancing the stability and performance of perovskite solar cells (PSCs). In this study, vanadium dioxide (VO<sub>2</sub>) was employed as an electron transport layer (ETL) to investigate the influence of its phase transition properties on PSC performance. Given the high-temperature resistance of titanium dioxide (TiO<sub>2</sub>), a p-i-n structured PSC with the configuration of ITO/Spiro-OMeTAD/MAPbI<sub>3</sub>/TiO<sub>2</sub>/VO<sub>2</sub>/Ag was constructed. Through numerical simulation, the PCE of the VO<sub>2</sub>-based perovskite solar cells reaches 8.226 % at 30 °C. When the temperature rises to 80 °C, the power conversion efficiency (PCE) does not show a decline but increases up to 9.429 %. This phenomenon reveals the superior thermally stable properties of the proposed structure when exposed to elevated temperature. Further optimization of the VO<sub>2</sub> layer thickness at 80 °C revealed that a thickness of 65 nm enables the device to achieve a peak efficiency of 9.601 %, while maintaining over 90 % of the initial PCE under reduced light intensities. These results demonstrate that the introduction of VO<sub>2</sub> and its interaction with TiO<sub>2</sub> in a layered structure can effectively adapt to high-temperature environments, providing valuable insights for developing efficient and thermally stable perovskite solar cells.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"322 ","pages":"Article 118550"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of vanadium dioxide integrated MAPbI3 solar cells for enhanced thermal stability and photovoltaic performance\",\"authors\":\"Min Li ,&nbsp;Shuai Guo ,&nbsp;Xiaoyu Zhao ,&nbsp;Sufeng Quan ,&nbsp;Xuefeng Wang ,&nbsp;Mengxuan Wu ,&nbsp;Dieter Weller ,&nbsp;Ruibin Liu\",\"doi\":\"10.1016/j.mseb.2025.118550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The selection of appropriate transport layer materials is of vital importance for enhancing the stability and performance of perovskite solar cells (PSCs). In this study, vanadium dioxide (VO<sub>2</sub>) was employed as an electron transport layer (ETL) to investigate the influence of its phase transition properties on PSC performance. Given the high-temperature resistance of titanium dioxide (TiO<sub>2</sub>), a p-i-n structured PSC with the configuration of ITO/Spiro-OMeTAD/MAPbI<sub>3</sub>/TiO<sub>2</sub>/VO<sub>2</sub>/Ag was constructed. Through numerical simulation, the PCE of the VO<sub>2</sub>-based perovskite solar cells reaches 8.226 % at 30 °C. When the temperature rises to 80 °C, the power conversion efficiency (PCE) does not show a decline but increases up to 9.429 %. This phenomenon reveals the superior thermally stable properties of the proposed structure when exposed to elevated temperature. Further optimization of the VO<sub>2</sub> layer thickness at 80 °C revealed that a thickness of 65 nm enables the device to achieve a peak efficiency of 9.601 %, while maintaining over 90 % of the initial PCE under reduced light intensities. These results demonstrate that the introduction of VO<sub>2</sub> and its interaction with TiO<sub>2</sub> in a layered structure can effectively adapt to high-temperature environments, providing valuable insights for developing efficient and thermally stable perovskite solar cells.</div></div>\",\"PeriodicalId\":18233,\"journal\":{\"name\":\"Materials Science and Engineering: B\",\"volume\":\"322 \",\"pages\":\"Article 118550\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: B\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921510725005744\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725005744","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

选择合适的传输层材料对于提高钙钛矿太阳能电池(PSCs)的稳定性和性能至关重要。本研究采用二氧化钒(VO2)作为电子传输层(ETL),研究其相变特性对PSC性能的影响。考虑到二氧化钛(TiO2)的耐高温性能,构建了ITO/Spiro-OMeTAD/MAPbI3/TiO2/VO2/Ag的p-i-n结构PSC。通过数值模拟,在30℃时,tio2基钙钛矿太阳能电池的PCE达到8.226%。当温度升高到80℃时,功率转换效率(PCE)没有下降,反而增加了9.429%。这一现象揭示了当暴露在高温下时,所提出的结构具有优越的热稳定性。在80°C下进一步优化VO2层厚度,发现厚度为65 nm的器件可以实现9.61%的峰值效率,同时在降低光强的情况下保持90%以上的初始PCE。这些结果表明,在层状结构中引入VO2及其与TiO2的相互作用可以有效地适应高温环境,为开发高效、热稳定的钙钛矿太阳能电池提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical simulation of vanadium dioxide integrated MAPbI3 solar cells for enhanced thermal stability and photovoltaic performance
The selection of appropriate transport layer materials is of vital importance for enhancing the stability and performance of perovskite solar cells (PSCs). In this study, vanadium dioxide (VO2) was employed as an electron transport layer (ETL) to investigate the influence of its phase transition properties on PSC performance. Given the high-temperature resistance of titanium dioxide (TiO2), a p-i-n structured PSC with the configuration of ITO/Spiro-OMeTAD/MAPbI3/TiO2/VO2/Ag was constructed. Through numerical simulation, the PCE of the VO2-based perovskite solar cells reaches 8.226 % at 30 °C. When the temperature rises to 80 °C, the power conversion efficiency (PCE) does not show a decline but increases up to 9.429 %. This phenomenon reveals the superior thermally stable properties of the proposed structure when exposed to elevated temperature. Further optimization of the VO2 layer thickness at 80 °C revealed that a thickness of 65 nm enables the device to achieve a peak efficiency of 9.601 %, while maintaining over 90 % of the initial PCE under reduced light intensities. These results demonstrate that the introduction of VO2 and its interaction with TiO2 in a layered structure can effectively adapt to high-temperature environments, providing valuable insights for developing efficient and thermally stable perovskite solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信