Zihan Xu , Binchen Mao , Hengyuan Liu , Shijia Wang , Xiaobo Chen , Sheng Guo
{"title":"12种同基因小鼠模型的综合多组学研究","authors":"Zihan Xu , Binchen Mao , Hengyuan Liu , Shijia Wang , Xiaobo Chen , Sheng Guo","doi":"10.1016/j.isci.2025.113024","DOIUrl":null,"url":null,"abstract":"<div><div>Mouse syngeneic models serve as indispensable tools for elucidating tumor-immune interactions and assessing immunotherapy efficacy. In this study, we first conducted a comprehensive evaluation of six label-free protein quantification pipelines across 12 mouse syngeneic models, revealing that data-independent acquisition (DIA) significantly outperforms data-dependent acquisition (DDA) in terms of data coverage, reproducibility, and inter-model discrimination. We next performed an integrative multi-omics analysis to uncover molecular mechanisms associated with treatment response. Our analysis identified Dnmt3a and Igf2r, which are correlated with resistance to immune checkpoint inhibitors (ICIs), and highlighted key pathways including interferon signaling and oxidative phosphorylation that distinguish responders from non-responders. To facilitate broader research applications, we have developed an interactive web resource that shares our multi-omics datasets and analytical results, equipped with user-friendly tools for further exploration. This resource aims to accelerate preclinical research and contribute to the development of personalized cancer therapies.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 8","pages":"Article 113024"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative multi-omics characterization of 12 syngeneic mouse models\",\"authors\":\"Zihan Xu , Binchen Mao , Hengyuan Liu , Shijia Wang , Xiaobo Chen , Sheng Guo\",\"doi\":\"10.1016/j.isci.2025.113024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mouse syngeneic models serve as indispensable tools for elucidating tumor-immune interactions and assessing immunotherapy efficacy. In this study, we first conducted a comprehensive evaluation of six label-free protein quantification pipelines across 12 mouse syngeneic models, revealing that data-independent acquisition (DIA) significantly outperforms data-dependent acquisition (DDA) in terms of data coverage, reproducibility, and inter-model discrimination. We next performed an integrative multi-omics analysis to uncover molecular mechanisms associated with treatment response. Our analysis identified Dnmt3a and Igf2r, which are correlated with resistance to immune checkpoint inhibitors (ICIs), and highlighted key pathways including interferon signaling and oxidative phosphorylation that distinguish responders from non-responders. To facilitate broader research applications, we have developed an interactive web resource that shares our multi-omics datasets and analytical results, equipped with user-friendly tools for further exploration. This resource aims to accelerate preclinical research and contribute to the development of personalized cancer therapies.</div></div>\",\"PeriodicalId\":342,\"journal\":{\"name\":\"iScience\",\"volume\":\"28 8\",\"pages\":\"Article 113024\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iScience\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589004225012854\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004225012854","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Integrative multi-omics characterization of 12 syngeneic mouse models
Mouse syngeneic models serve as indispensable tools for elucidating tumor-immune interactions and assessing immunotherapy efficacy. In this study, we first conducted a comprehensive evaluation of six label-free protein quantification pipelines across 12 mouse syngeneic models, revealing that data-independent acquisition (DIA) significantly outperforms data-dependent acquisition (DDA) in terms of data coverage, reproducibility, and inter-model discrimination. We next performed an integrative multi-omics analysis to uncover molecular mechanisms associated with treatment response. Our analysis identified Dnmt3a and Igf2r, which are correlated with resistance to immune checkpoint inhibitors (ICIs), and highlighted key pathways including interferon signaling and oxidative phosphorylation that distinguish responders from non-responders. To facilitate broader research applications, we have developed an interactive web resource that shares our multi-omics datasets and analytical results, equipped with user-friendly tools for further exploration. This resource aims to accelerate preclinical research and contribute to the development of personalized cancer therapies.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.