Tetsushi Sakurai , Takuya Ishizaki , Akiko M. Nakamura
{"title":"烧结玻璃材料热力学性能的实验研究:对太阳系原始多孔材料物理性能的启示","authors":"Tetsushi Sakurai , Takuya Ishizaki , Akiko M. Nakamura","doi":"10.1016/j.icarus.2025.116729","DOIUrl":null,"url":null,"abstract":"<div><div>Planetesimals underwent consolidation processes in the early solar system, which altered their thermal and mechanical properties. Sintering—a process that forms solid necks between particles—is considered one such process in planetesimals, influencing their filling factor, or porosity, as well as their thermal and mechanical properties.</div><div>In this study, to better constrain and understand the thermal and mechanical properties of planetesimals that evolved from initially powdery or granular bodies, as well as those of boulders on small bodies, which are considered remnant planetesimals, we prepared porous sintered samples consisting of glass particles with filling factors ranging from 0.35 to 0.75, corresponding to porosities of 65 % to 25 %. We then measured their thermal diffusivity, elastic wave velocity, and flexural strength, and derived empirical relationships for the normalized values—scaled by those at a filling factor of 1—as functions of filling factor or porosity. The normalized thermal diffusivities and elastic wave velocities of the sintered glass materials in this study showed similar dependencies on the filling factor. Moreover, the upper limits of the normalized elastic wave velocities were consistent with those of snow at corresponding filling factors, suggesting that these upper limits may be independent of the matrix material.</div><div>The derived empirical relationships apply to materials with porosities higher than those of meteorites. We estimated the porosity of a low-thermal-inertia boulder on the surface of asteroid Ryugu based on its thermal inertia, assuming no influence from internal cracks. The result suggests that the boulder's porosity may be higher than values previously reported, and should be regarded as one of the possible porosity estimates.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"441 ","pages":"Article 116729"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on thermal and mechanical properties of sintered glass materials: Implication for physical properties of primordial porous materials in the solar system\",\"authors\":\"Tetsushi Sakurai , Takuya Ishizaki , Akiko M. Nakamura\",\"doi\":\"10.1016/j.icarus.2025.116729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Planetesimals underwent consolidation processes in the early solar system, which altered their thermal and mechanical properties. Sintering—a process that forms solid necks between particles—is considered one such process in planetesimals, influencing their filling factor, or porosity, as well as their thermal and mechanical properties.</div><div>In this study, to better constrain and understand the thermal and mechanical properties of planetesimals that evolved from initially powdery or granular bodies, as well as those of boulders on small bodies, which are considered remnant planetesimals, we prepared porous sintered samples consisting of glass particles with filling factors ranging from 0.35 to 0.75, corresponding to porosities of 65 % to 25 %. We then measured their thermal diffusivity, elastic wave velocity, and flexural strength, and derived empirical relationships for the normalized values—scaled by those at a filling factor of 1—as functions of filling factor or porosity. The normalized thermal diffusivities and elastic wave velocities of the sintered glass materials in this study showed similar dependencies on the filling factor. Moreover, the upper limits of the normalized elastic wave velocities were consistent with those of snow at corresponding filling factors, suggesting that these upper limits may be independent of the matrix material.</div><div>The derived empirical relationships apply to materials with porosities higher than those of meteorites. We estimated the porosity of a low-thermal-inertia boulder on the surface of asteroid Ryugu based on its thermal inertia, assuming no influence from internal cracks. The result suggests that the boulder's porosity may be higher than values previously reported, and should be regarded as one of the possible porosity estimates.</div></div>\",\"PeriodicalId\":13199,\"journal\":{\"name\":\"Icarus\",\"volume\":\"441 \",\"pages\":\"Article 116729\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icarus\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019103525002775\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103525002775","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Experimental study on thermal and mechanical properties of sintered glass materials: Implication for physical properties of primordial porous materials in the solar system
Planetesimals underwent consolidation processes in the early solar system, which altered their thermal and mechanical properties. Sintering—a process that forms solid necks between particles—is considered one such process in planetesimals, influencing their filling factor, or porosity, as well as their thermal and mechanical properties.
In this study, to better constrain and understand the thermal and mechanical properties of planetesimals that evolved from initially powdery or granular bodies, as well as those of boulders on small bodies, which are considered remnant planetesimals, we prepared porous sintered samples consisting of glass particles with filling factors ranging from 0.35 to 0.75, corresponding to porosities of 65 % to 25 %. We then measured their thermal diffusivity, elastic wave velocity, and flexural strength, and derived empirical relationships for the normalized values—scaled by those at a filling factor of 1—as functions of filling factor or porosity. The normalized thermal diffusivities and elastic wave velocities of the sintered glass materials in this study showed similar dependencies on the filling factor. Moreover, the upper limits of the normalized elastic wave velocities were consistent with those of snow at corresponding filling factors, suggesting that these upper limits may be independent of the matrix material.
The derived empirical relationships apply to materials with porosities higher than those of meteorites. We estimated the porosity of a low-thermal-inertia boulder on the surface of asteroid Ryugu based on its thermal inertia, assuming no influence from internal cracks. The result suggests that the boulder's porosity may be higher than values previously reported, and should be regarded as one of the possible porosity estimates.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.