Laura Chastagnier , Lucie Essayan , Celine Thomann , Julia Niemann , Elisabeth Errazuriz-Cerda , Manon Laithier , Anne Baudouin , Christophe Marquette , Emma Petiot
{"title":"生物生产细胞系的3D生物打印","authors":"Laura Chastagnier , Lucie Essayan , Celine Thomann , Julia Niemann , Elisabeth Errazuriz-Cerda , Manon Laithier , Anne Baudouin , Christophe Marquette , Emma Petiot","doi":"10.1016/j.bprint.2025.e00423","DOIUrl":null,"url":null,"abstract":"<div><div>Three-dimensional (3D) bioprinting presents a transformative approach to replicating vivo-like environments for mammalian cell cultures, offering potential advances in bioproduction and tissue engineering. In this study, we investigated the growth, metabolic activity, and structural organization of four mammalian cell lines (HEK, MDCK, CHO, and Vero) in 3D bioprinted constructs. Our results demonstrate that even highly selected, immortalized cell lines can regain physiological traits closer to their native tissue when cultured in 3D environments. We observed significant shifts in proliferation kinetics, including reduced growth rates and reduced fermentative activity. A Design of Experiment (DOE) approach identified critical biofabrication parameters—such as hydrogel microporosity and cross-linking conditions—that modulate cell behavior and proliferation in 3D matrices. These findings highlight the potential of 3D bioprinting not only for medical applications, such as regenerative medicine and drug testing, but also for enhancing bioproduction processes by supporting higher cell densities and metabolic efficiency. Our work underscores the importance of optimizing 3D culture conditions to mimic vivo-like behaviors and improve productivity, offering new insights into the scalability of bioprinted constructs for industrial applications.</div></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"50 ","pages":"Article e00423"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D bioprinting of bioproduction cell lines\",\"authors\":\"Laura Chastagnier , Lucie Essayan , Celine Thomann , Julia Niemann , Elisabeth Errazuriz-Cerda , Manon Laithier , Anne Baudouin , Christophe Marquette , Emma Petiot\",\"doi\":\"10.1016/j.bprint.2025.e00423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Three-dimensional (3D) bioprinting presents a transformative approach to replicating vivo-like environments for mammalian cell cultures, offering potential advances in bioproduction and tissue engineering. In this study, we investigated the growth, metabolic activity, and structural organization of four mammalian cell lines (HEK, MDCK, CHO, and Vero) in 3D bioprinted constructs. Our results demonstrate that even highly selected, immortalized cell lines can regain physiological traits closer to their native tissue when cultured in 3D environments. We observed significant shifts in proliferation kinetics, including reduced growth rates and reduced fermentative activity. A Design of Experiment (DOE) approach identified critical biofabrication parameters—such as hydrogel microporosity and cross-linking conditions—that modulate cell behavior and proliferation in 3D matrices. These findings highlight the potential of 3D bioprinting not only for medical applications, such as regenerative medicine and drug testing, but also for enhancing bioproduction processes by supporting higher cell densities and metabolic efficiency. Our work underscores the importance of optimizing 3D culture conditions to mimic vivo-like behaviors and improve productivity, offering new insights into the scalability of bioprinted constructs for industrial applications.</div></div>\",\"PeriodicalId\":37770,\"journal\":{\"name\":\"Bioprinting\",\"volume\":\"50 \",\"pages\":\"Article e00423\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprinting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405886625000399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886625000399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Three-dimensional (3D) bioprinting presents a transformative approach to replicating vivo-like environments for mammalian cell cultures, offering potential advances in bioproduction and tissue engineering. In this study, we investigated the growth, metabolic activity, and structural organization of four mammalian cell lines (HEK, MDCK, CHO, and Vero) in 3D bioprinted constructs. Our results demonstrate that even highly selected, immortalized cell lines can regain physiological traits closer to their native tissue when cultured in 3D environments. We observed significant shifts in proliferation kinetics, including reduced growth rates and reduced fermentative activity. A Design of Experiment (DOE) approach identified critical biofabrication parameters—such as hydrogel microporosity and cross-linking conditions—that modulate cell behavior and proliferation in 3D matrices. These findings highlight the potential of 3D bioprinting not only for medical applications, such as regenerative medicine and drug testing, but also for enhancing bioproduction processes by supporting higher cell densities and metabolic efficiency. Our work underscores the importance of optimizing 3D culture conditions to mimic vivo-like behaviors and improve productivity, offering new insights into the scalability of bioprinted constructs for industrial applications.
期刊介绍:
Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.