{"title":"选择性稳定CO2电还原制乙烯和乙醇CuOx催化剂的动态价态工程","authors":"Huiting Huang, Jia Tian, Mingkun Jiang, Dan Wu","doi":"10.1016/j.mser.2025.101060","DOIUrl":null,"url":null,"abstract":"<div><div>Cu-based oxide (CuO<sub>x</sub>) catalysts have emerged as promising candidates for electrochemical CO<sub>2</sub> reduction to C<sub>2</sub> products such as ethylene (C<sub>2</sub>H<sub>4</sub>) and ethanol (C<sub>2</sub>H<sub>5</sub>OH). However, the simultaneous realization of high selectivity and long-term stability remains a critical challenge. This review systematically summarizes the fundamental mechanisms governing C–C coupling on CuO<sub>x</sub> catalysts, emphasizing the role of dynamic valence states, facet effects, coordination environments and local reaction microenvironments. The divergent formation pathways of C<sub>2</sub>H<sub>4</sub> and C<sub>2</sub>H<sub>5</sub>OH are discussed in detail, focusing on intermediate evolution, competitive adsorption (*CO, *H, *OH) and electronic structure modulation. Key structure-activity relationships are revealed, offering insights into how oxidation state engineering can steer product selectivity. In parallel, degradation pathways such as Cu⁺ reduction, particle aggregation, and morphological collapse are analyzed, and advanced stability-by-design strategies including pulse electrolysis, heterostructure construction, doping, and surface coating are critically reviewed. Looking ahead, operando characterization, valence-interface precision engineering, and scalable catalyst architectures are expected to play critical roles in enabling the industrial implementation of CO<sub>2</sub>-to-C<sub>2</sub> conversion. By bridging mechanistic understanding with design strategies, this work provides a comprehensive framework for the rational development of efficient and durable CuO<sub>x</sub> catalysts.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"166 ","pages":"Article 101060"},"PeriodicalIF":31.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic valence engineering of CuOx catalysts for selective and stable CO2 electroreduction to ethylene and ethanol\",\"authors\":\"Huiting Huang, Jia Tian, Mingkun Jiang, Dan Wu\",\"doi\":\"10.1016/j.mser.2025.101060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cu-based oxide (CuO<sub>x</sub>) catalysts have emerged as promising candidates for electrochemical CO<sub>2</sub> reduction to C<sub>2</sub> products such as ethylene (C<sub>2</sub>H<sub>4</sub>) and ethanol (C<sub>2</sub>H<sub>5</sub>OH). However, the simultaneous realization of high selectivity and long-term stability remains a critical challenge. This review systematically summarizes the fundamental mechanisms governing C–C coupling on CuO<sub>x</sub> catalysts, emphasizing the role of dynamic valence states, facet effects, coordination environments and local reaction microenvironments. The divergent formation pathways of C<sub>2</sub>H<sub>4</sub> and C<sub>2</sub>H<sub>5</sub>OH are discussed in detail, focusing on intermediate evolution, competitive adsorption (*CO, *H, *OH) and electronic structure modulation. Key structure-activity relationships are revealed, offering insights into how oxidation state engineering can steer product selectivity. In parallel, degradation pathways such as Cu⁺ reduction, particle aggregation, and morphological collapse are analyzed, and advanced stability-by-design strategies including pulse electrolysis, heterostructure construction, doping, and surface coating are critically reviewed. Looking ahead, operando characterization, valence-interface precision engineering, and scalable catalyst architectures are expected to play critical roles in enabling the industrial implementation of CO<sub>2</sub>-to-C<sub>2</sub> conversion. By bridging mechanistic understanding with design strategies, this work provides a comprehensive framework for the rational development of efficient and durable CuO<sub>x</sub> catalysts.</div></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":\"166 \",\"pages\":\"Article 101060\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X25001378\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25001378","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamic valence engineering of CuOx catalysts for selective and stable CO2 electroreduction to ethylene and ethanol
Cu-based oxide (CuOx) catalysts have emerged as promising candidates for electrochemical CO2 reduction to C2 products such as ethylene (C2H4) and ethanol (C2H5OH). However, the simultaneous realization of high selectivity and long-term stability remains a critical challenge. This review systematically summarizes the fundamental mechanisms governing C–C coupling on CuOx catalysts, emphasizing the role of dynamic valence states, facet effects, coordination environments and local reaction microenvironments. The divergent formation pathways of C2H4 and C2H5OH are discussed in detail, focusing on intermediate evolution, competitive adsorption (*CO, *H, *OH) and electronic structure modulation. Key structure-activity relationships are revealed, offering insights into how oxidation state engineering can steer product selectivity. In parallel, degradation pathways such as Cu⁺ reduction, particle aggregation, and morphological collapse are analyzed, and advanced stability-by-design strategies including pulse electrolysis, heterostructure construction, doping, and surface coating are critically reviewed. Looking ahead, operando characterization, valence-interface precision engineering, and scalable catalyst architectures are expected to play critical roles in enabling the industrial implementation of CO2-to-C2 conversion. By bridging mechanistic understanding with design strategies, this work provides a comprehensive framework for the rational development of efficient and durable CuOx catalysts.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.