{"title":"游动或无根:c-二- gmp信号与鞭毛运动的相互作用","authors":"Xuanlin Chen, Liyun Wang, Victor Sourjik","doi":"10.1016/j.mib.2025.102632","DOIUrl":null,"url":null,"abstract":"<div><div>Bacteria have evolved multiple strategies to thrive in diverse environments. These include the ability to make rapid transitions between motile and sessile lifestyles, either of which might be favoured dependent of the environmental conditions. The central regulator for these lifestyle transitions is the second messenger cyclic dimeric guanosine monophosphate (c-di-GMP), which in general, inhibits flagellar motility and promotes the formation of sessile biofilm communities. Reciprocally, flagellated cells suppress c-di-GMP synthesis or activate its degradation to preserve motility. The interplay between c-di-GMP signalling and motility occurs at multiple levels of regulation, with evolutionarily conserved general principles but species-specific molecular mechanisms enabling environmental adaptations. Recent studies, described in this review, have revealed the emergent complexity of the intricate cross-regulation between c-di-GMP signalling and flagellar motility, highlighting context-specific deviations from simple antagonism and underscoring the importance of studying transient dynamics of c-di-GMP, gene expression, and motility changes during the lifestyle transitions.</div></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"87 ","pages":"Article 102632"},"PeriodicalIF":5.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Swimming or sessile: the interplay between c-di-GMP signalling and flagellar motility\",\"authors\":\"Xuanlin Chen, Liyun Wang, Victor Sourjik\",\"doi\":\"10.1016/j.mib.2025.102632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bacteria have evolved multiple strategies to thrive in diverse environments. These include the ability to make rapid transitions between motile and sessile lifestyles, either of which might be favoured dependent of the environmental conditions. The central regulator for these lifestyle transitions is the second messenger cyclic dimeric guanosine monophosphate (c-di-GMP), which in general, inhibits flagellar motility and promotes the formation of sessile biofilm communities. Reciprocally, flagellated cells suppress c-di-GMP synthesis or activate its degradation to preserve motility. The interplay between c-di-GMP signalling and motility occurs at multiple levels of regulation, with evolutionarily conserved general principles but species-specific molecular mechanisms enabling environmental adaptations. Recent studies, described in this review, have revealed the emergent complexity of the intricate cross-regulation between c-di-GMP signalling and flagellar motility, highlighting context-specific deviations from simple antagonism and underscoring the importance of studying transient dynamics of c-di-GMP, gene expression, and motility changes during the lifestyle transitions.</div></div>\",\"PeriodicalId\":10921,\"journal\":{\"name\":\"Current opinion in microbiology\",\"volume\":\"87 \",\"pages\":\"Article 102632\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369527425000542\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369527425000542","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Swimming or sessile: the interplay between c-di-GMP signalling and flagellar motility
Bacteria have evolved multiple strategies to thrive in diverse environments. These include the ability to make rapid transitions between motile and sessile lifestyles, either of which might be favoured dependent of the environmental conditions. The central regulator for these lifestyle transitions is the second messenger cyclic dimeric guanosine monophosphate (c-di-GMP), which in general, inhibits flagellar motility and promotes the formation of sessile biofilm communities. Reciprocally, flagellated cells suppress c-di-GMP synthesis or activate its degradation to preserve motility. The interplay between c-di-GMP signalling and motility occurs at multiple levels of regulation, with evolutionarily conserved general principles but species-specific molecular mechanisms enabling environmental adaptations. Recent studies, described in this review, have revealed the emergent complexity of the intricate cross-regulation between c-di-GMP signalling and flagellar motility, highlighting context-specific deviations from simple antagonism and underscoring the importance of studying transient dynamics of c-di-GMP, gene expression, and motility changes during the lifestyle transitions.
期刊介绍:
Current Opinion in Microbiology is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of microbiology. It consists of 6 issues per year covering the following 11 sections, each of which is reviewed once a year:
Host-microbe interactions: bacteria
Cell regulation
Environmental microbiology
Host-microbe interactions: fungi/parasites/viruses
Antimicrobials
Microbial systems biology
Growth and development: eukaryotes/prokaryotes